improved overlay, removed backups

This commit is contained in:
Anuj K 2025-09-03 15:38:18 +05:30
parent a6ed2e731f
commit 8d52d89024
4 changed files with 86 additions and 1047 deletions

View file

@ -1,17 +1,19 @@
import * as THREE from 'three';
// Enhanced ripple simulation with multiple trailing ripples and lighting
const FluidSimShader = {
uniforms: {
tPrev: { value: null },
tPrev: { value: null },
iResolution: { value: new THREE.Vector2() },
iTime: { value: 0.0 },
mouse: { value: new THREE.Vector3(-1, -1, 0.0) },
iTime: { value: 0.0 },
mouse: { value: new THREE.Vector3(-1, -1, 0.0) },
dissipation: { value: 0.950 }, // Slightly more persistent for trails
tension: { value: 2.0 }, // Higher tension for stronger ripples
radius: { value: 20.0 }, // Larger splat radius
trailLength: { value: 5 }, // Number of trailing ripples
tension: { value: 2.2 }, // Higher tension for stronger ripples
radius: { value: 20.0 }, // Larger splat radius
trailLength: { value: 5 }, // Number of trailing ripples
},
vertexShader: `
varying vec2 vUv;
void main() {
@ -19,14 +21,14 @@ const FluidSimShader = {
gl_Position = vec4(position.xy, 0.0, 1.0);
}
`,
fragmentShader: `
precision highp float;
varying vec2 vUv;
uniform sampler2D tPrev;
uniform vec2 iResolution;
uniform vec2 iResolution;
uniform float iTime;
uniform vec3 mouse;
uniform vec3 mouse;
uniform float dissipation;
uniform float tension;
uniform float radius;
@ -44,19 +46,19 @@ const FluidSimShader = {
float prev = currPrev.g;
// Enhanced 8-neighbor laplacian for stronger ripples
float up = readRG(vUv + vec2(0.0, texel.y)).r;
float down = readRG(vUv + vec2(0.0, -texel.y)).r;
float up = readRG(vUv + vec2(0.0, texel.y)).r;
float down = readRG(vUv + vec2(0.0, -texel.y)).r;
float right = readRG(vUv + vec2( texel.x, 0.0)).r;
float left = readRG(vUv + vec2(-texel.x, 0.0)).r;
float left = readRG(vUv + vec2(-texel.x, 0.0)).r;
// Diagonal neighbors for smoother ripples
float upLeft = readRG(vUv + vec2(-texel.x, texel.y)).r;
float upRight = readRG(vUv + vec2( texel.x, texel.y)).r;
float downLeft = readRG(vUv + vec2(-texel.x, -texel.y)).r;
float upLeft = readRG(vUv + vec2(-texel.x, texel.y)).r;
float upRight = readRG(vUv + vec2( texel.x, texel.y)).r;
float downLeft = readRG(vUv + vec2(-texel.x, -texel.y)).r;
float downRight = readRG(vUv + vec2( texel.x, -texel.y)).r;
// Enhanced laplacian with diagonal weights
float lap = (up + down + left + right) * 0.2 +
float lap = (up + down + left + right) * 0.2 +
(upLeft + upRight + downLeft + downRight) * 0.05 - curr;
// Wave equation with enhanced parameters
@ -67,7 +69,7 @@ const FluidSimShader = {
vec2 uvPx = vUv * iResolution;
vec2 d = uvPx - mouse.xy;
float dist = length(d);
// Create multiple concentric ripples
for (float i = 0.0; i < 4.0; i++) {
if (i >= trailLength) break;
@ -91,20 +93,23 @@ const FluidSimShader = {
`
};
// Enhanced distortion shader with dynamic lighting
// Enhanced distortion shader with dynamic lighting and ripple whiteness
export const FluidDistortionShader = {
uniforms: {
tDiffuse: { value: null },
tSim: { value: null },
iResolution: { value: new THREE.Vector2() },
amount: { value: 0.12 }, // Stronger base distortion
tDiffuse: { value: null },
tSim: { value: null },
iResolution: { value: new THREE.Vector2() },
amount: { value: 0.12 }, // Stronger base distortion
chromaticAmount: { value: 0.015 }, // Enhanced chromatic aberration
lightPosition: { value: new THREE.Vector3(0.5, 0.5, 1.0) }, // Light position
lightIntensity: { value: 1.5 }, // Light brightness
lightColor: { value: new THREE.Color(0.8, 0.9, 1.0) }, // Cool light color
normalStrength: { value: 2.0 }, // How pronounced the lighting effect is
ambientLight: { value: 0.15 }, // Base ambient lighting
lightPosition: { value: new THREE.Vector3(0.5, 0.5, 1.0) }, // Light position
lightIntensity: { value: 1.5 }, // Light brightness
lightColor: { value: new THREE.Color(0.8, 0.9, 1.0) }, // Cool light color
normalStrength: { value: 2.0 }, // How pronounced the lighting effect is
ambientLight: { value: 0.15 }, // Base ambient lighting
rippleWhiteness: { value: 0.15 }, // Amount of white tint for ripples
rippleBrightness: { value: 1.8 }, // Brightness multiplier for ripple areas
},
vertexShader: `
varying vec2 vUv;
void main() {
@ -112,20 +117,22 @@ export const FluidDistortionShader = {
gl_Position = vec4(position.xy, 0.0, 1.0);
}
`,
fragmentShader: `
precision highp float;
varying vec2 vUv;
uniform sampler2D tDiffuse;
uniform sampler2D tSim;
uniform vec2 iResolution;
uniform vec2 iResolution;
uniform float amount;
uniform float chromaticAmount;
uniform vec3 lightPosition;
uniform vec3 lightPosition;
uniform float lightIntensity;
uniform vec3 lightColor;
uniform vec3 lightColor;
uniform float normalStrength;
uniform float ambientLight;
uniform float rippleWhiteness;
uniform float rippleBrightness;
void main() {
vec2 texel = 1.0 / iResolution;
@ -147,10 +154,9 @@ export const FluidDistortionShader = {
// Add subtle trailing distortion based on height
vec2 trailOffset = grad * abs(hC) * amount * 0.3;
vec2 totalOffset = baseOffset + trailOffset;
// Chromatic aberration with enhanced separation
vec2 chromaticOffset = grad * chromaticAmount;
vec2 uvR = vUv + totalOffset + chromaticOffset;
vec2 uvG = vUv + totalOffset;
vec2 uvB = vUv + totalOffset - chromaticOffset;
@ -164,27 +170,38 @@ export const FluidDistortionShader = {
float r = texture2D(tDiffuse, uvR).r;
float g = texture2D(tDiffuse, uvG).g;
float b = texture2D(tDiffuse, uvB).b;
vec3 distortedColor = vec3(r, g, b);
// Dynamic lighting calculation
vec3 lightDir = normalize(vec3(lightPosition.xy - vUv, lightPosition.z));
float NdotL = max(dot(normal, lightDir), 0.0);
// Create rim lighting effect for ripples
float rimLight = pow(1.0 - abs(dot(normal, vec3(0.0, 0.0, 1.0))), 2.0);
// Combine lighting effects
vec3 lighting = lightColor * (NdotL * lightIntensity + rimLight * 0.3) + ambientLight;
// Apply lighting selectively - stronger where there are ripples
// Calculate ripple intensity for both lighting and whiteness
float rippleIntensity = abs(hC) + length(grad) * 0.5;
rippleIntensity = clamp(rippleIntensity, 0.0, 1.0);
// Apply lighting selectively - stronger where there are ripples
vec3 litColor = mix(distortedColor, distortedColor * lighting, rippleIntensity);
// Add white tint to ripples for visibility over black areas
vec3 whiteColor = vec3(1.0, 1.0, 1.0);
// Blend original color with lit color based on ripple presence
vec3 finalColor = mix(distortedColor, distortedColor * lighting, rippleIntensity);
// Create a smooth falloff for the whiteness effect
float whiteIntensity = smoothstep(0.0, 0.3, rippleIntensity) * rippleWhiteness;
gl_FragColor = vec4(finalColor, 1.0);
// Blend in the white tint
vec3 rippleColor = mix(litColor, whiteColor, whiteIntensity);
// Brighten areas with ripples
rippleColor = mix(rippleColor, rippleColor * rippleBrightness, rippleIntensity * 0.5);
gl_FragColor = vec4(rippleColor, 1.0);
}
`
};
@ -193,14 +210,18 @@ export const FluidDistortionShader = {
export function createFluidSimulation(renderer, dpr = 1) {
const simScene = new THREE.Scene();
const simCamera = new THREE.OrthographicCamera(-1, 1, 1, -1, 0, 1);
const quad = new THREE.Mesh(new THREE.PlaneGeometry(2, 2), new THREE.ShaderMaterial({
uniforms: THREE.UniformsUtils.clone(FluidSimShader.uniforms),
vertexShader: FluidSimShader.vertexShader,
fragmentShader: FluidSimShader.fragmentShader,
depthTest: false,
depthWrite: false
}));
const quad = new THREE.Mesh(
new THREE.PlaneGeometry(2, 2),
new THREE.ShaderMaterial({
uniforms: THREE.UniformsUtils.clone(FluidSimShader.uniforms),
vertexShader: FluidSimShader.vertexShader,
fragmentShader: FluidSimShader.fragmentShader,
depthTest: false,
depthWrite: false
})
);
simScene.add(quad);
// Higher precision for better ripple quality
@ -215,6 +236,7 @@ export function createFluidSimulation(renderer, dpr = 1) {
let width = Math.max(2, Math.floor(window.innerWidth * dpr));
let height = Math.max(2, Math.floor(window.innerHeight * dpr));
let rtA = new THREE.WebGLRenderTarget(width, height, params);
let rtB = new THREE.WebGLRenderTarget(width, height, params);
@ -247,7 +269,7 @@ export function createFluidSimulation(renderer, dpr = 1) {
renderer.setRenderTarget(rtB);
renderer.render(simScene, simCamera);
renderer.setRenderTarget(null);
swap();
}

View file

@ -1,341 +0,0 @@
import './style.css'
import * as THREE from 'three';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { RoomEnvironment } from 'three/addons/environments/RoomEnvironment.js';
import { EffectComposer } from 'three/addons/postprocessing/EffectComposer.js';
import { RenderPass } from 'three/addons/postprocessing/RenderPass.js';
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass.js';
// Scene setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.setFocalLength(50);
const raycaster = new THREE.Raycaster();
const mouse = new THREE.Vector2();
let isTwisting = false;
let twistProgress = 0;
const twistSpeed = 0.05; // Adjust speed
const twistStrength = 0.3; // Adjust strength
let scrollCount = 0;
const scrollThreshold = 20; // Number of scroll events to trigger the animation
// Renderer setup
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 1.2;
renderer.outputColorSpace = THREE.SRGBColorSpace;
renderer.physicallyCorrectLights = true;
document.body.appendChild(renderer.domElement);
// Post-processing: Bloom
const composer = new EffectComposer(renderer);
const renderPass = new RenderPass(scene, camera);
composer.addPass(renderPass);
const bloomPass = new UnrealBloomPass(
new THREE.Vector2(window.innerWidth, window.innerHeight),
1.0, // strength
0.45, // radius
0.85 // threshold
);
composer.addPass(bloomPass);
// Video texture for emissive "screen"-like effect on orange material
const video = document.createElement('video');
video.src = '/shader-flash.webm';
video.muted = true;
video.loop = true;
video.playsInline = true;
video.autoplay = true;
video.preload = 'auto';
const videoTexture = new THREE.VideoTexture(video);
videoTexture.colorSpace = THREE.SRGBColorSpace;
videoTexture.generateMipmaps = false;
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
// Ensure autoplay starts (muted autoplay is commonly allowed)
video.play().catch(() => {});
// Local procedural environment for better PBR response (no network)
const pmrem = new THREE.PMREMGenerator(renderer);
const roomEnv = new RoomEnvironment();
scene.environment = pmrem.fromScene(roomEnv).texture;
pmrem.dispose();
roomEnv.dispose();
scene.environment = null; // This will make the renderer's clear color visible again
// Lighting is authored below.
// Lighting
const ambientLight = new THREE.AmbientLight(0xffffff, 0.6);
scene.add(ambientLight);
const hemiLight = new THREE.HemisphereLight(0xffffff, 0x666666, 1.5);
hemiLight.position.set(0, 20, 0);
scene.add(hemiLight);
// // Key light (main directional) - angled to avoid direct reflection
// const keyLight = new THREE.DirectionalLight(0xffffff, 2.0);
// keyLight.position.set(12, 8, 8);
// keyLight.castShadow = true;
// keyLight.shadow.mapSize.width = 2048;
// keyLight.shadow.mapSize.height = 2048;
// scene.add(keyLight);
// Fill light (opposite side) - angled
const fillLight = new THREE.DirectionalLight(0xffffff, 1.2);
fillLight.position.set(-12, 6, -8);
scene.add(fillLight);
// Top light - angled to avoid direct downward reflection
const topLight = new THREE.DirectionalLight(0xffffff, 1.5);
topLight.position.set(5, 15, 5);
scene.add(topLight);
// Bottom light - angled upward
const bottomLight = new THREE.DirectionalLight(0xffffff, 0.8);
bottomLight.position.set(-3, -8, 3);
scene.add(bottomLight);
// Side lights for even illumination - angled
const leftLight = new THREE.DirectionalLight(0xffffff, 1.0);
leftLight.position.set(-12, 2, 5);
scene.add(leftLight);
const rightLight = new THREE.DirectionalLight(0xffffff, 1.0);
rightLight.position.set(12, 2, -5);
scene.add(rightLight);
// Front and back lights - angled to avoid direct camera reflection
const frontLight = new THREE.DirectionalLight(0xffffff, 0.8);
frontLight.position.set(8, 4, 12);
scene.add(frontLight);
const backLight = new THREE.DirectionalLight(0xffffff, 0.8);
backLight.position.set(-8, 4, -12);
scene.add(backLight);
// Reduced camera light
const cameraLight = new THREE.PointLight(0xffffff, 0.8, 0, 2);
camera.add(cameraLight);
scene.add(camera);
// Controls
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.25;
const loader = new GLTFLoader();
const dracoLoader = new DRACOLoader();
dracoLoader.setDecoderPath('node_modules/three/examples/jsm/libs/draco/');
loader.setDRACOLoader(dracoLoader);
let mixer = null;
loader.load('/innovation.glb', (gltf) => {
const model = gltf.scene;
scene.add(model);
// --- Define and Apply Materials ---
const glassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.05,
transmission: 1,
ior: 2,
thickness: 2,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0x000000),
transparent: true,
depthWrite: false,
alphaTest: 0
});
const lightOrangeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600, metalness: 0.05, roughness: 0.4,
envMapIntensity: 0, emissive: new THREE.Color(0xffad47),
emissiveMap: videoTexture, emissiveIntensity: 2.25
});
const orangeMeshes = ['dblsc', 'ec', 'gemini', 'infinity', 'star', 'dpd'];
const targetGlassNames = ['Cube.alt90.df'];
const sanitize = (s) => s.toLowerCase().replace(/[^a-z0-9]/g, '');
const nameMatches = (name, targets) => {
const clean = sanitize(name);
return targets.some((t) => {
const ct = sanitize(t);
return clean === ct || clean.includes(ct) || ct.includes(clean);
});
};
model.traverse((object) => {
if (object.isMesh) {
object.castShadow = true;
object.receiveShadow = true;
if (nameMatches(object.name, targetGlassNames)) {
// Create outer glass shell
object.material = glassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2; // Render outer glass last
// Create inner glass shell for better depth perception
const innerShell = object.clone();
innerShell.material = glassMaterial.clone();
innerShell.material.side = THREE.DoubleSide;
innerShell.material.depthWrite = false;
innerShell.material.thickness = 4; // Thinner inner layer
innerShell.material.transmission = 0.8; // More transparent inner layer
innerShell.renderOrder = 1; // Render inner glass before outer
// Scale inner shell slightly smaller
innerShell.scale.multiplyScalar(0.95);
object.parent.add(innerShell);
} else if (nameMatches(object.name, orangeMeshes)) {
object.material = lightOrangeMaterial.clone();
object.renderOrder = 0; // Render orange objects first
}
}
});
// Compute bounds for camera framing
const box = new THREE.Box3().setFromObject(model);
const size = box.getSize(new THREE.Vector3());
const center = box.getCenter(new THREE.Vector3());
// Set up animations
if (gltf.animations && gltf.animations.length > 0) {
mixer = new THREE.AnimationMixer(model);
gltf.animations.forEach((clip) => {
mixer.clipAction(clip).play();
});
mixer.timeScale = 3.0;
}
// Position camera
const maxDim = Math.max(size.x, size.y, size.z);
camera.position.set(center.x, center.y, center.z + maxDim * 2);
controls.target.copy(center);
controls.update();
}, undefined, (error) => {
console.error('Error loading model:', error);
});
const clock = new THREE.Clock();
function onMouseScroll(event) {
// Only count scrolls if the animation is not already running
if (!isTwisting) {
// You can check event.deltaY to determine scroll direction
if (event.deltaY !== 0) {
scrollCount++;
console.log(`Scroll count: ${scrollCount}`); // For debugging
}
if (scrollCount >= scrollThreshold) {
isTwisting = true;
twistProgress = 0;
scrollCount = 0; // Reset the counter
}
}
}
function twistMesh(mesh, progress) {
if (!mesh || !mesh.geometry || !mesh.geometry.attributes.position) {
return;
}
const positions = mesh.geometry.attributes.position;
// Store original positions on the first run
if (!mesh.geometry.userData.originalPositions) {
mesh.geometry.userData.originalPositions = new Float32Array(positions.array);
// Also store bounding box data
const box = new THREE.Box3().setFromObject(mesh);
mesh.geometry.userData.bounds = {
size: box.getSize(new THREE.Vector3()),
center: box.getCenter(new THREE.Vector3())
};
}
const original = mesh.geometry.userData.originalPositions;
const { size, center } = mesh.geometry.userData.bounds;
const totalHeight = size.y; // Use Y-size for the twist axis
for (let i = 0; i < positions.count; i++) {
const x = original[i * 3];
const y = original[i * 3 + 1];
const z = original[i * 3 + 2];
// Normalize the y-position from 0 to 1 based on the mesh's height
const normalizedY = (y - center.y + totalHeight / 2) / totalHeight;
// Calculate the twist angle based on normalized y and progress
const twistAngle = normalizedY * progress * twistStrength * 2 * Math.PI;
// Apply rotation to the X and Z coordinates
positions.setX(i, x * Math.cos(twistAngle) - z * Math.sin(twistAngle));
positions.setY(i, y); // Y remains unchanged as it's the axis of rotation
positions.setZ(i, x * Math.sin(twistAngle) + z * Math.cos(twistAngle));
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Attach the click event listener
window.addEventListener('wheel', onMouseScroll, {passive: true});
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
if (mixer) mixer.update(delta);
controls.update();
// The main loop for the twisting animation
if (isTwisting) {
twistProgress += twistSpeed;
if (twistProgress > 1.0) {
twistProgress = 1.0;
isTwisting = false;
}
// Traverse the entire scene to find all meshes to twist
scene.traverse((object) => {
if (object.isMesh) {
twistMesh(object, twistProgress);
}
});
}
composer.render();
}
animate();
window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
composer.setSize(window.innerWidth, window.innerHeight);
});

View file

@ -1,643 +0,0 @@
import './style.css'
import * as THREE from 'three';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { RoomEnvironment } from 'three/addons/environments/RoomEnvironment.js';
import { EffectComposer } from 'three/addons/postprocessing/EffectComposer.js';
import { RenderPass } from 'three/addons/postprocessing/RenderPass.js';
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass.js';
// Scene setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.setFocalLength(50);
const raycaster = new THREE.Raycaster();
const mouse = new THREE.Vector2();
// Transition state management
let currentScene = 0; // 0: innovation, 1: agility, 2: storytelling
let isTransitioning = false;
let isTwisting = false;
let twistProgress = 0;
const twistSpeed = 0.02; // Easily adjustable twist speed
const twistStrength = 0.3;
const fadeSpeed = 1; // Easily adjustable fade speed
const transitionDuration = 1; // Easily adjustable transition duration (seconds)
let scrollCount = 0;
const scrollThreshold = 10; // Changed to 10 as requested
let transitionStartTime = 0;
// Scene objects
let currentModel = null;
let nextModel = null;
let mixer = null;
let nextMixer = null;
let autoRotationAngle = 0;
// Renderer setup
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 1.2;
renderer.outputColorSpace = THREE.SRGBColorSpace;
renderer.physicallyCorrectLights = true;
document.body.appendChild(renderer.domElement);
// Post-processing: Bloom
const composer = new EffectComposer(renderer);
const renderPass = new RenderPass(scene, camera);
composer.addPass(renderPass);
const bloomPass = new UnrealBloomPass(
new THREE.Vector2(window.innerWidth, window.innerHeight),
1.0, // strength
0.45, // radius
0.85 // threshold
);
composer.addPass(bloomPass);
// Video texture for emissive "screen"-like effect on orange material
const video = document.createElement('video');
video.src = '/shader-flash.webm';
video.muted = true;
video.loop = true;
video.playsInline = true;
video.autoplay = true;
video.preload = 'auto';
const videoTexture = new THREE.VideoTexture(video);
videoTexture.colorSpace = THREE.SRGBColorSpace;
videoTexture.generateMipmaps = false;
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
// Ensure autoplay starts (muted autoplay is commonly allowed)
video.play().catch(() => {});
// Local procedural environment for better PBR response (no network)
const pmrem = new THREE.PMREMGenerator(renderer);
const roomEnv = new RoomEnvironment();
scene.environment = pmrem.fromScene(roomEnv).texture;
pmrem.dispose();
roomEnv.dispose();
scene.environment = null; // This will make the renderer's clear color visible again
// Consistent Lighting Setup
const ambientLight = new THREE.AmbientLight(0xffffff, 0.6);
scene.add(ambientLight);
const hemiLight = new THREE.HemisphereLight(0xffffff, 0x666666, 1.5);
hemiLight.position.set(0, 20, 0);
scene.add(hemiLight);
const fillLight = new THREE.DirectionalLight(0xffffff, 1.2);
fillLight.position.set(-12, 6, -8);
scene.add(fillLight);
const topLight = new THREE.DirectionalLight(0xffffff, 1.5);
topLight.position.set(5, 15, 5);
scene.add(topLight);
const bottomLight = new THREE.DirectionalLight(0xffffff, 0.8);
bottomLight.position.set(-3, -8, 3);
scene.add(bottomLight);
const leftLight = new THREE.DirectionalLight(0xffffff, 1.0);
leftLight.position.set(-12, 2, 5);
scene.add(leftLight);
const rightLight = new THREE.DirectionalLight(0xffffff, 1.0);
rightLight.position.set(12, 2, -5);
scene.add(rightLight);
const frontLight = new THREE.DirectionalLight(0xffffff, 0.8);
frontLight.position.set(8, 4, 12);
scene.add(frontLight);
const backLight = new THREE.DirectionalLight(0xffffff, 0.8);
backLight.position.set(-8, 4, -12);
scene.add(backLight);
const cameraLight = new THREE.PointLight(0xffffff, 0.8, 0, 2);
camera.add(cameraLight);
scene.add(camera);
// Controls
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.25;
// Material definitions
// Clear thick glass for innovation
const innovationGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.05,
transmission: 1,
ior: 2,
thickness: 2,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0x000000),
transparent: true,
depthWrite: false,
alphaTest: 0
});
// Slightly frosted glass for agility and storytelling
const frostedGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.0,
roughness: 0.25,
transmission: 1.0,
ior: 1.5,
thickness: 2.0,
clearcoat: 0.75,
clearcoatRoughness: 0.25,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 1.5,
envMapIntensity: 1.25,
specularIntensity: 1.0,
specularColor: new THREE.Color(0xffffff),
transparent: true,
depthWrite: false,
side: THREE.DoubleSide
});
// Orange material with video shader for innovation
const lightOrangeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600,
metalness: 0.05,
roughness: 0.4,
envMapIntensity: 0,
emissive: new THREE.Color(0xffad47),
emissiveMap: videoTexture,
emissiveIntensity: 2.25
});
const loader = new GLTFLoader();
const dracoLoader = new DRACOLoader();
dracoLoader.setDecoderPath('node_modules/three/examples/jsm/libs/draco/');
loader.setDRACOLoader(dracoLoader);
// Apply materials based on model type
function applyMaterials(model, modelType) {
console.log(`=== Material Assignment Debug for ${modelType} ===`);
let meshCount = 0;
model.traverse((object) => {
if (object.isMesh) {
meshCount++;
console.log(`Found mesh: "${object.name}"`);
const previousMaterial = object.material;
object.castShadow = true;
object.receiveShadow = true;
if (modelType === 'innovation') {
// Innovation-specific material logic
const orangeMeshes = ['dblsc', 'ec', 'gemini', 'infinity', 'star', 'dpd'];
const targetGlassNames = ['Cube.alt90.df'];
const sanitize = (s) => s.toLowerCase().replace(/[^a-z0-9]/g, '');
const nameMatches = (name, targets) => {
const clean = sanitize(name);
return targets.some((t) => {
const ct = sanitize(t);
return clean === ct || clean.includes(ct) || ct.includes(clean);
});
};
if (nameMatches(object.name, targetGlassNames)) {
// Create outer glass shell with innovation-specific material
object.material = innovationGlassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2;
// Create inner glass shell
const innerShell = object.clone();
innerShell.material = innovationGlassMaterial.clone();
innerShell.material.side = THREE.DoubleSide;
innerShell.material.depthWrite = false;
innerShell.material.thickness = 4;
innerShell.material.transmission = 0.8;
innerShell.renderOrder = 1;
innerShell.scale.multiplyScalar(0.95);
object.parent.add(innerShell);
} else if (nameMatches(object.name, orangeMeshes)) {
object.material = lightOrangeMaterial.clone();
object.renderOrder = 0;
}
} else {
// Agility and Storytelling use frosted glass material for all meshes
if (object.name.startsWith('base')) {
console.log(` → Applying frosted glass material to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
} else {
console.log(` → Applying frosted glass material (fallback) to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
}
}
object.material.needsUpdate = true;
// Cleanup previous materials
if (Array.isArray(previousMaterial)) {
previousMaterial.forEach((mat) => mat && mat.dispose && mat.dispose());
} else if (previousMaterial && previousMaterial.dispose) {
previousMaterial.dispose();
}
}
});
console.log(`Total meshes processed: ${meshCount}`);
console.log(`=== End Material Assignment Debug for ${modelType} ===`);
}
// Center and frame model with camera
function centerAndFrameModel(model, targetCamera = camera) {
const box = new THREE.Box3().setFromObject(model);
const center = box.getCenter(new THREE.Vector3());
model.position.sub(center);
model.updateMatrixWorld(true);
const size = box.getSize(new THREE.Vector3());
const maxDim = Math.max(size.x, size.y, size.z);
// Only set camera position if it's not already positioned (avoid reset during transitions)
if (!isTransitioning) {
targetCamera.position.set(0, 0, maxDim * 2);
controls.target.set(0, 0, 0);
controls.update();
}
}
// Setup animations based on model type
function setupAnimations(model, gltf, modelType) {
if (gltf.animations && gltf.animations.length > 0) {
const animMixer = new THREE.AnimationMixer(model);
gltf.animations.forEach((clip) => {
const action = animMixer.clipAction(clip);
if (modelType === 'innovation') {
// PingPong loop for innovation
action.loop = THREE.LoopPingPong;
action.play();
} else if (modelType === 'agility') {
// Regular loop for agility
action.loop = THREE.LoopRepeat;
action.play();
} else if (modelType === 'storytelling') {
// Play once for storytelling
action.loop = THREE.LoopOnce;
action.clampWhenFinished = true;
action.play();
}
});
if (modelType === 'innovation') {
animMixer.timeScale = 3.0; // Keep existing timeScale for innovation
}
return animMixer;
}
return null;
}
// Load model function
function loadModel(filename, modelType, onLoadCallback) {
loader.load(`/${filename}`, (gltf) => {
const model = gltf.scene;
// Apply materials
applyMaterials(model, modelType);
// Setup animations
const animMixer = setupAnimations(model, gltf, modelType);
// Center and frame model
centerAndFrameModel(model);
if (onLoadCallback) {
onLoadCallback(model, animMixer);
}
}, undefined, (error) => {
console.error(`Error loading ${filename}:`, error);
});
}
// Load initial innovation model
loadModel('innovation.glb', 'innovation', (model, animMixer) => {
currentModel = model;
mixer = animMixer;
scene.add(currentModel);
});
// Twist animation function
function twistMesh(mesh, progress) {
if (!mesh || !mesh.geometry || !mesh.geometry.attributes.position) {
return;
}
const positions = mesh.geometry.attributes.position;
// Store original positions on the first run
if (!mesh.geometry.userData.originalPositions) {
mesh.geometry.userData.originalPositions = new Float32Array(positions.array);
// Also store bounding box data
const box = new THREE.Box3().setFromObject(mesh);
mesh.geometry.userData.bounds = {
size: box.getSize(new THREE.Vector3()),
center: box.getCenter(new THREE.Vector3())
};
}
const original = mesh.geometry.userData.originalPositions;
const { size, center } = mesh.geometry.userData.bounds;
const totalHeight = size.y; // Use Y-size for the twist axis
for (let i = 0; i < positions.count; i++) {
const x = original[i * 3];
const y = original[i * 3 + 1];
const z = original[i * 3 + 2];
// Normalize the y-position from 0 to 1 based on the mesh's height
const normalizedY = (y - center.y + totalHeight / 2) / totalHeight;
// Calculate the twist angle based on normalized y and progress
const twistAngle = normalizedY * progress * twistStrength * 2 * Math.PI;
// Apply rotation to the X and Z coordinates
positions.setX(i, x * Math.cos(twistAngle) - z * Math.sin(twistAngle));
positions.setY(i, y); // Y remains unchanged as it's the axis of rotation
positions.setZ(i, x * Math.sin(twistAngle) + z * Math.cos(twistAngle));
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Reset mesh geometry to original state
function resetMeshGeometry(mesh) {
if (!mesh || !mesh.geometry || !mesh.geometry.userData.originalPositions) {
return;
}
const positions = mesh.geometry.attributes.position;
const original = mesh.geometry.userData.originalPositions;
for (let i = 0; i < positions.count; i++) {
positions.setXYZ(i, original[i * 3], original[i * 3 + 1], original[i * 3 + 2]);
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Start transition to next scene
function startTransition() {
if (isTransitioning || currentScene >= 2) return;
isTransitioning = true;
isTwisting = true;
twistProgress = 0;
transitionStartTime = performance.now();
// Load next model
let nextModelFile = '';
let nextModelType = '';
if (currentScene === 0) {
nextModelFile = 'agility.glb';
nextModelType = 'agility';
} else if (currentScene === 1) {
nextModelFile = 'storytelling.glb';
nextModelType = 'storytelling';
}
if (nextModelFile) {
loadModel(nextModelFile, nextModelType, (model, animMixer) => {
nextModel = model;
nextMixer = animMixer;
// Start next model as invisible and positioned below
nextModel.position.y = -10;
nextModel.traverse((obj) => {
if (obj.material) {
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = 0;
});
} else {
obj.material.transparent = true;
obj.material.opacity = 0;
}
}
});
scene.add(nextModel);
});
}
}
// Update transition animation
function updateTransition(deltaTime) {
if (!isTransitioning) return;
const elapsed = (performance.now() - transitionStartTime) / 1000;
const transitionProgress = Math.min(elapsed / transitionDuration, 1);
// Smooth easing function (ease-in-out)
const easeInOut = (t) => t * t * (3 - 2 * t);
const easedProgress = easeInOut(transitionProgress);
if (currentModel) {
// Move current model up and fade out
currentModel.position.y = easedProgress * 10;
currentModel.traverse((obj) => {
if (obj.material) {
const targetOpacity = 1 - easedProgress;
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = targetOpacity;
});
} else {
obj.material.transparent = true;
obj.material.opacity = targetOpacity;
}
}
});
}
if (nextModel) {
// Move next model to center and fade in
nextModel.position.y = -10 + (easedProgress * 10);
nextModel.traverse((obj) => {
if (obj.material) {
const targetOpacity = easedProgress;
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = targetOpacity;
});
} else {
obj.material.transparent = true;
obj.material.opacity = targetOpacity;
}
}
});
}
// Complete transition
if (transitionProgress >= 1) {
// Remove current model
if (currentModel) {
scene.remove(currentModel);
// Clean up geometry user data
currentModel.traverse((obj) => {
if (obj.geometry && obj.geometry.userData.originalPositions) {
delete obj.geometry.userData.originalPositions;
delete obj.geometry.userData.bounds;
}
});
}
// Switch to next model
if (nextModel) {
currentModel = nextModel;
mixer = nextMixer;
// Reset position and opacity
currentModel.position.y = 0;
currentModel.traverse((obj) => {
if (obj.material) {
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.opacity = 1;
if (currentScene === 2) { // Keep transparency for storytelling glass
mat.transparent = mat.transmission > 0;
} else {
mat.transparent = mat.transmission > 0;
}
});
} else {
obj.material.opacity = 1;
if (currentScene === 2) { // Keep transparency for storytelling glass
obj.material.transparent = obj.material.transmission > 0;
} else {
obj.material.transparent = obj.material.transmission > 0;
}
}
}
});
}
nextModel = null;
nextMixer = null;
isTransitioning = false;
isTwisting = false;
twistProgress = 0;
currentScene++;
scrollCount = 0;
console.log(`Transition complete. Current scene: ${currentScene}`);
}
}
// Scroll event handler
function onMouseScroll(event) {
// Only count downward scrolls and if not currently transitioning
if (!isTransitioning && event.deltaY > 0) {
scrollCount++;
console.log(`Scroll count: ${scrollCount}`);
if (scrollCount >= scrollThreshold) {
startTransition();
}
}
}
// Attach scroll event listener
window.addEventListener('wheel', onMouseScroll, {passive: true});
// Animation loop
const clock = new THREE.Clock();
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
// Update mixers
if (mixer) mixer.update(delta);
if (nextMixer) nextMixer.update(delta);
// Update transition
if (isTransitioning) {
updateTransition(delta);
// Apply twist during transition
if (isTwisting && currentModel) {
twistProgress += twistSpeed;
if (twistProgress > 1.0) {
twistProgress = 1.0;
// Reset geometry after twist completes
// currentModel.traverse((object) => {
// if (object.isMesh) {
// resetMeshGeometry(object);
// }
// });
isTwisting = false;
} else {
// Apply twist to current model
currentModel.traverse((object) => {
if (object.isMesh) {
twistMesh(object, twistProgress);
}
});
}
}
}
// Turntable rotation for current model
if (currentModel && !isTransitioning) {
autoRotationAngle += delta * 0.5;
currentModel.rotation.y = autoRotationAngle;
}
controls.update();
composer.render();
}
animate();
// Handle window resize
window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
composer.setSize(window.innerWidth, window.innerHeight);
});

View file

@ -56,11 +56,15 @@ distortionPass.material.uniforms.amount.value = 0.005; // Stronger distortion
distortionPass.material.uniforms.chromaticAmount.value = 0.002; // Enhanced chromatic aberration
// Enhanced lighting parameters
distortionPass.material.uniforms.lightIntensity.value = 1.5;
distortionPass.material.uniforms.lightColor.value.set(1, 1, 1); // Cool blue-white
distortionPass.material.uniforms.lightIntensity.value = 0;
distortionPass.material.uniforms.lightColor.value.set(1, 1, 1);
distortionPass.material.uniforms.normalStrength.value = 2.0;
distortionPass.material.uniforms.ambientLight.value = 1;
// New ripple whiteness parameters
distortionPass.material.uniforms.rippleWhiteness.value = 0.025; // Amount of white tint
distortionPass.material.uniforms.rippleBrightness.value = 1; // Brightness boost for ripples
composer.addPass(distortionPass);
// Enhanced pointer tracking
@ -89,19 +93,19 @@ renderer.domElement.addEventListener('pointermove', (e) => {
const dx = (pointer.prevX < 0) ? 0 : Math.abs(x - pointer.prevX);
const dy = (pointer.prevY < 0) ? 0 : Math.abs(y - pointer.prevY);
const speed = Math.min(Math.sqrt(dx * dx + dy * dy) / (6.0 * dpr), 1.0); // More sensitive
pointer.x = x;
pointer.y = y;
pointer.strength = speed * 1.2; // Enhanced strength
pointer.prevX = x;
pointer.prevY = y;
// Update light position to follow cursor
const rect = renderer.domElement.getBoundingClientRect();
const normalizedX = (e.clientX - rect.left) / rect.width;
const normalizedY = 1.0 - (e.clientY - rect.top) / rect.height; // Flip Y
distortionPass.material.uniforms.lightPosition.value.set(normalizedX, normalizedY, 1.0);
// Update mouse coordinates for starfield
mouse.x = ((e.clientX - rect.left) / rect.width) * 2 - 1;
mouse.y = -((e.clientY - rect.top) / rect.height) * 2 + 1;
@ -111,10 +115,9 @@ renderer.domElement.addEventListener('pointerleave', () => {
pointer.x = -1;
pointer.y = -1;
pointer.strength = 0.0;
mouse.x = -999;
mouse.y = -999;
// Reset light to center when mouse leaves
distortionPass.material.uniforms.lightPosition.value.set(0.5, 0.5, 1.0);
}, { passive: true });
@ -123,17 +126,16 @@ renderer.domElement.addEventListener('pointerleave', () => {
function initializeScene() {
console.log('Initializing first scene (bold)');
const { model, animMixer } = createModelFromPreloaded('bold', preloadedModels, camera, controls);
setCurrentModel(model);
setMixer(animMixer);
scene.add(currentModel);
startBoldRoughnessAnimation(true);
console.log('Bold scene initialized');
}
// Animation loop
const clock = new THREE.Clock();
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
@ -175,10 +177,9 @@ function animate() {
async function init() {
try {
console.log('Starting application initialization');
preloadedModels = await sceneLoader.loadAllModels();
console.log('All models loaded successfully');
initializeScene();
animate();
console.log('Animation loop started');
@ -187,6 +188,7 @@ async function init() {
onMouseScroll(event, preloadedModels, scene, camera, controls);
}, { passive: true });
console.log('Scroll event listener attached');
} catch (error) {
console.error('Failed to initialize scene:', error);
sceneLoader.setLoadingMessage('Error loading experience. Please refresh.');
@ -201,7 +203,6 @@ window.addEventListener('resize', () => {
camera.aspect = w / h;
camera.updateProjectionMatrix();
renderer.setSize(w, h);
composer.setSize(w, h);