Compare commits

...

5 commits

Author SHA1 Message Date
Anuj K 8d52d89024 improved overlay, removed backups 2025-09-03 15:38:18 +05:30
Anuj K a6ed2e731f refined the overlay animation 2025-09-03 14:47:15 +05:30
Anuj K 23be78a855 refined fluid, starfield added 2025-09-03 09:02:56 +05:30
Anuj K 42e873cda5 fluid effect overlay added 2025-09-02 16:42:53 +05:30
Anuj K 1391d2b5cf js files separated 2025-09-01 12:27:13 +05:30
12 changed files with 1943 additions and 1800 deletions

298
index1.html Normal file
View file

@ -0,0 +1,298 @@
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Water-like Cursor Ripples — Strong Chromatic Dispersion</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body {
width: 100%;
height: 100%;
font-family: Inter, system-ui, -apple-system, Segoe UI, Roboto, "Helvetica Neue", Arial;
background: #000000; /* black background */
color: #ffefcc; /* keep nav/footer readable */
overflow: hidden;
}
nav {
position: fixed; top: 0; left: 0; right: 0;
display: flex; justify-content: space-between; align-items: center;
padding: 16px 24px; z-index: 2; pointer-events: none;
}
.nav-left, .nav-right { display: flex; gap: 16px; align-items: center; pointer-events: auto; }
.logo { font-weight: 700; letter-spacing: 0.5px; }
.nav-right button {
background: transparent; color: #ffefcc; border: 1px solid #ffefcc66;
border-radius: 999px; padding: 8px 14px; cursor: pointer;
}
footer {
position: fixed; bottom: 0; left: 0; right: 0;
display: flex; justify-content: space-between; align-items: center;
padding: 16px 24px; z-index: 2; pointer-events: none;
}
footer .title { width: 40%; font-size: clamp(24px, 6vw, 64px); line-height: 1.1; font-weight: 800; }
footer .links { display: flex; gap: 20px; pointer-events: auto; }
canvas.webgl { position: fixed; inset: 0; width: 100vw; height: 100vh; display: block; z-index: 0; }
</style>
</head>
<body>
<nav>
<div class="nav-left">
<div class="logo">YP</div>
<p>Work</p><p>About</p><p>Contact</p>
</div>
<div class="nav-right"><button>Get Started</button></div>
</nav>
<footer>
<div class="title">YP</div>
<div class="links">
<a href="#" style="color:#ffefcc;">Twitter</a>
<a href="#" style="color:#ffefcc;">Instagram</a>
<a href="#" style="color:#ffefcc;">Discord</a>
</div>
</footer>
<canvas class="webgl"></canvas>
<script type="module">
import * as THREE from 'https://unpkg.com/three@0.160.0/build/three.module.js';
// Config
const DPR_MAX = 2;
const BASE_TEXT = 'YOUNG PANDAS';
const BG_COLOR = '#000000'; // black background on canvas texture
const TEXT_COLOR = '#ffffff'; // white center text
// Renderer
const canvas = document.querySelector('canvas.webgl');
const renderer = new THREE.WebGLRenderer({ canvas, antialias: true, alpha: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio || 1, DPR_MAX));
renderer.setSize(window.innerWidth, window.innerHeight);
// Scenes & Camera
const simScene = new THREE.Scene();
const mainScene = new THREE.Scene();
const camera = new THREE.OrthographicCamera(-1, 1, 1, -1, 0, 1);
// Render targets
let width = Math.floor(window.innerWidth * renderer.getPixelRatio());
let height = Math.floor(window.innerHeight * renderer.getPixelRatio());
const rtOptions = {
minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter,
wrapS: THREE.ClampToEdgeWrapping, wrapT: THREE.ClampToEdgeWrapping,
type: THREE.HalfFloatType ?? THREE.FloatType, format: THREE.RGBAFormat,
depthBuffer: false, stencilBuffer: false
};
let rta = new THREE.WebGLRenderTarget(width, height, rtOptions);
let rtb = new THREE.WebGLRenderTarget(width, height, rtOptions);
// Text Canvas -> Texture
let textCanvas, textCtx, textTexture;
function makeTextTexture() {
const dpr = renderer.getPixelRatio();
width = Math.floor(window.innerWidth * dpr);
height = Math.floor(window.innerHeight * dpr);
textCanvas = document.createElement('canvas');
textCanvas.width = width; textCanvas.height = height;
textCtx = textCanvas.getContext('2d', { alpha: true });
// Black background
textCtx.fillStyle = BG_COLOR;
textCtx.fillRect(0, 0, width, height);
// Orange center text
const fontPx = Math.floor(Math.min(width, height) * 0.18);
textCtx.fillStyle = TEXT_COLOR;
textCtx.textAlign = 'center'; textCtx.textBaseline = 'middle';
textCtx.font = `800 ${fontPx}px Inter, system-ui, -apple-system, Segoe UI, Roboto, Arial`;
textCtx.fillText(BASE_TEXT, width * 0.5, height * 0.5);
if (textTexture) textTexture.dispose();
textTexture = new THREE.CanvasTexture(textCanvas);
textTexture.needsUpdate = true;
textTexture.minFilter = THREE.LinearFilter;
textTexture.magFilter = THREE.LinearFilter;
textTexture.format = THREE.RGBAFormat;
}
makeTextTexture();
// Geometry
const quad = new THREE.PlaneGeometry(2, 2);
// Shaders
const passThroughVert = `
varying vec2 vUv;
void main(){ vUv = uv; gl_Position = vec4(position, 1.0); }
`;
// Ripple simulation (tight brush, fast decay)
const simFrag = `
precision highp float;
varying vec2 vUv;
uniform sampler2D uTexture;
uniform vec2 uResolution;
uniform vec2 uMouse;
uniform float uTime;
void main(){
vec2 texel = 1.0 / uResolution;
vec2 data = texture2D(uTexture, vUv).xy;
float h = data.x;
float hPrev = data.y;
float hL = texture2D(uTexture, vUv - vec2(texel.x, 0.0)).x;
float hR = texture2D(uTexture, vUv + vec2(texel.x, 0.0)).x;
float hT = texture2D(uTexture, vUv + vec2(0.0, texel.y)).x;
float hB = texture2D(uTexture, vUv - vec2(0.0, texel.y)).x;
float sum = hL + hR + hT + hB;
float hNew = (sum * 0.5 - hPrev);
hNew *= 0.985;
vec2 frag = vUv * uResolution;
float radius = 8.0;
float dist = length(frag - uMouse);
float impulse = exp(-dist*dist/(2.0*radius*radius));
hNew += 0.25 * impulse;
hNew = mix(hNew, 0.0, 0.01);
gl_FragColor = vec4(hNew, h, 0.0, 1.0);
}
`;
// Render with strong, masked chromatic dispersion (offsets in pixels)
const renderFrag = `
precision highp float;
varying vec2 vUv;
uniform sampler2D uSim;
uniform sampler2D uText;
uniform vec2 uResolution;
uniform float uRefract;
uniform float uCAPixels; // RGB shift in pixels (large for strong separation)
uniform vec2 uCAMask; // gradient thresholds for where CA applies
void main(){
vec2 texel = 1.0 / uResolution;
// Height gradients
float hX = texture2D(uSim, vUv + vec2(texel.x, 0.0)).x
- texture2D(uSim, vUv - vec2(texel.x, 0.0)).x;
float hY = texture2D(uSim, vUv + vec2(0.0, texel.y)).x
- texture2D(uSim, vUv - vec2(0.0, texel.y)).x;
// Normal and base refraction
vec3 normal = normalize(vec3(-hX, -hY, 1.0));
vec2 baseUV = vUv + normal.xy * uRefract;
// Ripple strength mask (lower thresholds -> more CA on ripples)
float g = length(vec2(hX, hY));
float mask = smoothstep(uCAMask.x, uCAMask.y, g);
// Direction along gradient and large pixel-based offsets
vec2 dir = normalize(vec2(hX, hY) + 1e-6);
vec2 px = texel * uCAPixels;
// Exaggerated dispersion: push red/blue more than green
// Red goes +dir, Blue goes -dir, Green slightly centered/offset
vec2 rUV = baseUV + dir * (px * 1.30);
vec2 gUV = baseUV + dir * (px * 0.20);
vec2 bUV = baseUV - dir * (px * 1.35);
float r = texture2D(uText, rUV).r;
float gC = texture2D(uText, gUV).g;
float b = texture2D(uText, bUV).b;
vec4 caColor = vec4(r, gC, b, 1.0);
vec4 base = texture2D(uText, baseUV);
// Mix CA in only on ripples
vec4 color = mix(base, caColor, mask);
// Mild lighting accent
float light = dot(normal, normalize(vec3(0.0, 0.0, 1.0)));
color.rgb += 0.08 * light;
gl_FragColor = color;
}
`;
// Materials & meshes
const simUniforms = {
uTexture: { value: rta.texture },
uResolution: { value: new THREE.Vector2(width, height) },
uMouse: { value: new THREE.Vector2(-1.0, -1.0) },
uTime: { value: 0 }
};
const simMat = new THREE.ShaderMaterial({ vertexShader: passThroughVert, fragmentShader: simFrag, uniforms: simUniforms });
simScene.add(new THREE.Mesh(quad, simMat));
const renderUniforms = {
uSim: { value: rta.texture },
uText: { value: textTexture },
uResolution: { value: new THREE.Vector2(width, height) },
uRefract: { value: 0.8 },
uCAPixels: { value: 8.0 }, // big shift: increase to 1014 for even more
uCAMask: { value: new THREE.Vector2(0.00008, 0.0005) } // lower => CA engages more
};
const renderMat = new THREE.ShaderMaterial({
vertexShader: passThroughVert, fragmentShader: renderFrag, uniforms: renderUniforms, transparent: true
});
mainScene.add(new THREE.Mesh(quad, renderMat));
// Mouse input
const mouse = new THREE.Vector2(-1, -1);
function setMouseFromEvent(e){
const dpr = renderer.getPixelRatio();
const rect = renderer.domElement.getBoundingClientRect();
const x = (e.clientX - rect.left) * dpr;
const y = (e.clientY - rect.top) * dpr;
mouse.set(x, (rect.height * dpr) - y);
}
renderer.domElement.addEventListener('mousemove', (e)=>{ setMouseFromEvent(e); simUniforms.uMouse.value.copy(mouse); });
renderer.domElement.addEventListener('mouseleave', ()=>{ simUniforms.uMouse.value.set(-1.0, -1.0); });
// Resize
function onResize(){
renderer.setPixelRatio(Math.min(window.devicePixelRatio || 1, DPR_MAX));
renderer.setSize(window.innerWidth, window.innerHeight);
const dpr = renderer.getPixelRatio();
width = Math.floor(window.innerWidth * dpr);
height = Math.floor(window.innerHeight * dpr);
rta.dispose(); rtb.dispose();
rta = new THREE.WebGLRenderTarget(width, height, rtOptions);
rtb = new THREE.WebGLRenderTarget(width, height, rtOptions);
simUniforms.uResolution.value.set(width, height);
renderUniforms.uResolution.value.set(width, height);
makeTextTexture();
renderUniforms.uText.value = textTexture;
}
window.addEventListener('resize', onResize);
// Animate
const clock = new THREE.Clock();
function animate(){
simUniforms.uTime.value = clock.getElapsedTime();
// Sim: rta -> rtb
simUniforms.uTexture.value = rta.texture;
renderer.setRenderTarget(rtb);
renderer.render(simScene, camera);
// Render with latest sim
renderUniforms.uSim.value = rtb.texture;
renderer.setRenderTarget(null);
renderer.render(mainScene, camera);
// Swap
const tmp = rta; rta = rtb; rtb = tmp;
requestAnimationFrame(animate);
}
animate();
</script>
</body>
</html>

106
src/animationManager.js Normal file
View file

@ -0,0 +1,106 @@
// Bold scene roughness animation state
export let boldRoughnessAnimation = {
isActive: false,
startTime: 0,
delayDuration: 1.0, // 1 second delay (will be dynamic)
transitionDuration: 1.0, // 1 second transition
startRoughness: 0.5,
endRoughness: 0.05,
materials: [] // Store references to bold materials
};
// Innovation glass animation state
export let innovationGlassAnimation = {
isActive: false,
startTime: 0,
transitionDuration: 0.2,
startIor: 1.0,
endIor: 2.0,
startThickness: 1.0,
endThickness: 2.0,
materials: [] // Store references to innovation glass materials
};
// Start/restart bold roughness animation with optional delay control
export function startBoldRoughnessAnimation(withDelay = true) {
console.log('Starting/restarting bold roughness animation');
// Reset all bold glass materials to starting roughness value
boldRoughnessAnimation.materials.forEach(material => {
material.roughness = boldRoughnessAnimation.startRoughness;
material.needsUpdate = true;
});
boldRoughnessAnimation.isActive = true;
boldRoughnessAnimation.startTime = performance.now();
// Set delayDuration based on withDelay parameter
boldRoughnessAnimation.delayDuration = withDelay ? 1.0 : 0.0;
console.log('Bold roughness animation started with delay:', withDelay);
}
// Start innovation glass animation
export function startInnovationGlassAnimation() {
console.log('Starting innovation glass animation');
// Reset all innovation glass materials to starting values
innovationGlassAnimation.materials.forEach(material => {
material.ior = innovationGlassAnimation.startIor;
material.thickness = innovationGlassAnimation.startThickness;
material.needsUpdate = true;
});
innovationGlassAnimation.isActive = true;
innovationGlassAnimation.startTime = performance.now();
console.log('Innovation glass animation started');
}
export function updateBoldRoughnessAnimation() {
if (boldRoughnessAnimation.isActive) {
const elapsed = (performance.now() - boldRoughnessAnimation.startTime) / 1000;
if (elapsed >= boldRoughnessAnimation.delayDuration) {
// Delay period is over, start roughness transition
const transitionElapsed = elapsed - boldRoughnessAnimation.delayDuration;
const transitionProgress = Math.min(transitionElapsed / boldRoughnessAnimation.transitionDuration, 1);
// Smooth easing function (ease-in-out)
const easeInOut = (t) => t * t * (3 - 2 * t);
const easedProgress = easeInOut(transitionProgress);
// Interpolate roughness from 0.5 to 0.05
const currentRoughness = boldRoughnessAnimation.startRoughness +
(boldRoughnessAnimation.endRoughness - boldRoughnessAnimation.startRoughness) * easedProgress;
// Apply to all bold materials
boldRoughnessAnimation.materials.forEach(material => {
material.roughness = currentRoughness;
material.needsUpdate = true;
});
// End animation when complete
if (transitionProgress >= 1) {
boldRoughnessAnimation.isActive = false;
console.log('Bold roughness animation completed');
}
}
}
}
export function updateInnovationGlassAnimation() {
if (innovationGlassAnimation.isActive) {
const elapsed = (performance.now() - innovationGlassAnimation.startTime) / 1000;
const transitionProgress = Math.min(elapsed / innovationGlassAnimation.transitionDuration, 1);
// Smooth easing function (ease-in-out)
const easeInOut = (t) => t * t * (3 - 2 * t);
const easedProgress = easeInOut(transitionProgress);
// Interpolate IOR from 1.0 to 2.0
const currentIor = innovationGlassAnimation.startIor +
(innovationGlassAnimation.endIor - innovationGlassAnimation.startIor) * easedProgress;
// Interpolate thickness from 1.0 to 2.0
const currentThickness = innovationGlassAnimation.startThickness +
(innovationGlassAnimation.endThickness - innovationGlassAnimation.startThickness) * easedProgress;
// Apply to all innovation glass materials
innovationGlassAnimation.materials.forEach(material => {
material.ior = currentIor;
material.thickness = currentThickness;
material.needsUpdate = true;
});
// End animation when complete
if (transitionProgress >= 1) {
innovationGlassAnimation.isActive = false;
console.log('Innovation glass animation completed');
}
}
}

289
src/fluidDistortion.js Normal file
View file

@ -0,0 +1,289 @@
import * as THREE from 'three';
// Enhanced ripple simulation with multiple trailing ripples and lighting
const FluidSimShader = {
uniforms: {
tPrev: { value: null },
iResolution: { value: new THREE.Vector2() },
iTime: { value: 0.0 },
mouse: { value: new THREE.Vector3(-1, -1, 0.0) },
dissipation: { value: 0.950 }, // Slightly more persistent for trails
tension: { value: 2.2 }, // Higher tension for stronger ripples
radius: { value: 20.0 }, // Larger splat radius
trailLength: { value: 5 }, // Number of trailing ripples
},
vertexShader: `
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = vec4(position.xy, 0.0, 1.0);
}
`,
fragmentShader: `
precision highp float;
varying vec2 vUv;
uniform sampler2D tPrev;
uniform vec2 iResolution;
uniform float iTime;
uniform vec3 mouse;
uniform float dissipation;
uniform float tension;
uniform float radius;
uniform float trailLength;
vec2 readRG(vec2 uv) {
vec4 c = texture2D(tPrev, uv);
return c.rg;
}
void main() {
vec2 texel = 1.0 / iResolution;
vec2 currPrev = readRG(vUv);
float curr = currPrev.r;
float prev = currPrev.g;
// Enhanced 8-neighbor laplacian for stronger ripples
float up = readRG(vUv + vec2(0.0, texel.y)).r;
float down = readRG(vUv + vec2(0.0, -texel.y)).r;
float right = readRG(vUv + vec2( texel.x, 0.0)).r;
float left = readRG(vUv + vec2(-texel.x, 0.0)).r;
// Diagonal neighbors for smoother ripples
float upLeft = readRG(vUv + vec2(-texel.x, texel.y)).r;
float upRight = readRG(vUv + vec2( texel.x, texel.y)).r;
float downLeft = readRG(vUv + vec2(-texel.x, -texel.y)).r;
float downRight = readRG(vUv + vec2( texel.x, -texel.y)).r;
// Enhanced laplacian with diagonal weights
float lap = (up + down + left + right) * 0.2 +
(upLeft + upRight + downLeft + downRight) * 0.05 - curr;
// Wave equation with enhanced parameters
float next = curr + (curr - prev) * dissipation + lap * tension;
// Multiple trailing ripples from mouse movement
if (mouse.z > 0.0001) {
vec2 uvPx = vUv * iResolution;
vec2 d = uvPx - mouse.xy;
float dist = length(d);
// Create multiple concentric ripples
for (float i = 0.0; i < 4.0; i++) {
if (i >= trailLength) break;
float offset = i * radius * 0.4; // Spacing between ripples
float r = radius + offset;
float timeOffset = i * 0.3; // Temporal offset for trailing effect
// Gaussian with sine wave for ripple pattern
float g = exp(-pow(dist - offset, 2.0) / (r * r * 0.5));
float ripple = sin(dist * 0.2 - iTime * 8.0 + timeOffset) * g;
// Diminishing strength for trailing ripples
float strength = mouse.z * (1.0 - i * 0.2) * 0.8;
next += ripple * strength;
}
}
gl_FragColor = vec4(next, curr, 0.0, 1.0);
}
`
};
// Enhanced distortion shader with dynamic lighting and ripple whiteness
export const FluidDistortionShader = {
uniforms: {
tDiffuse: { value: null },
tSim: { value: null },
iResolution: { value: new THREE.Vector2() },
amount: { value: 0.12 }, // Stronger base distortion
chromaticAmount: { value: 0.015 }, // Enhanced chromatic aberration
lightPosition: { value: new THREE.Vector3(0.5, 0.5, 1.0) }, // Light position
lightIntensity: { value: 1.5 }, // Light brightness
lightColor: { value: new THREE.Color(0.8, 0.9, 1.0) }, // Cool light color
normalStrength: { value: 2.0 }, // How pronounced the lighting effect is
ambientLight: { value: 0.15 }, // Base ambient lighting
rippleWhiteness: { value: 0.15 }, // Amount of white tint for ripples
rippleBrightness: { value: 1.8 }, // Brightness multiplier for ripple areas
},
vertexShader: `
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = vec4(position.xy, 0.0, 1.0);
}
`,
fragmentShader: `
precision highp float;
varying vec2 vUv;
uniform sampler2D tDiffuse;
uniform sampler2D tSim;
uniform vec2 iResolution;
uniform float amount;
uniform float chromaticAmount;
uniform vec3 lightPosition;
uniform float lightIntensity;
uniform vec3 lightColor;
uniform float normalStrength;
uniform float ambientLight;
uniform float rippleWhiteness;
uniform float rippleBrightness;
void main() {
vec2 texel = 1.0 / iResolution;
// Sample height field for normal calculation
float hC = texture2D(tSim, vUv).r;
float hL = texture2D(tSim, vUv - vec2(texel.x, 0.0)).r;
float hR = texture2D(tSim, vUv + vec2(texel.x, 0.0)).r;
float hD = texture2D(tSim, vUv - vec2(0.0, texel.y)).r;
float hU = texture2D(tSim, vUv + vec2(0.0, texel.y)).r;
// Calculate gradient and normal
vec2 grad = vec2(hR - hL, hU - hD) * normalStrength;
vec3 normal = normalize(vec3(-grad.x, -grad.y, 1.0));
// Enhanced distortion with trailing effect
vec2 baseOffset = grad * amount;
// Add subtle trailing distortion based on height
vec2 trailOffset = grad * abs(hC) * amount * 0.3;
vec2 totalOffset = baseOffset + trailOffset;
// Chromatic aberration with enhanced separation
vec2 chromaticOffset = grad * chromaticAmount;
vec2 uvR = vUv + totalOffset + chromaticOffset;
vec2 uvG = vUv + totalOffset;
vec2 uvB = vUv + totalOffset - chromaticOffset;
// Clamp UVs
uvR = clamp(uvR, vec2(0.0), vec2(1.0));
uvG = clamp(uvG, vec2(0.0), vec2(1.0));
uvB = clamp(uvB, vec2(0.0), vec2(1.0));
// Sample distorted colors
float r = texture2D(tDiffuse, uvR).r;
float g = texture2D(tDiffuse, uvG).g;
float b = texture2D(tDiffuse, uvB).b;
vec3 distortedColor = vec3(r, g, b);
// Dynamic lighting calculation
vec3 lightDir = normalize(vec3(lightPosition.xy - vUv, lightPosition.z));
float NdotL = max(dot(normal, lightDir), 0.0);
// Create rim lighting effect for ripples
float rimLight = pow(1.0 - abs(dot(normal, vec3(0.0, 0.0, 1.0))), 2.0);
// Combine lighting effects
vec3 lighting = lightColor * (NdotL * lightIntensity + rimLight * 0.3) + ambientLight;
// Calculate ripple intensity for both lighting and whiteness
float rippleIntensity = abs(hC) + length(grad) * 0.5;
rippleIntensity = clamp(rippleIntensity, 0.0, 1.0);
// Apply lighting selectively - stronger where there are ripples
vec3 litColor = mix(distortedColor, distortedColor * lighting, rippleIntensity);
// Add white tint to ripples for visibility over black areas
vec3 whiteColor = vec3(1.0, 1.0, 1.0);
// Create a smooth falloff for the whiteness effect
float whiteIntensity = smoothstep(0.0, 0.3, rippleIntensity) * rippleWhiteness;
// Blend in the white tint
vec3 rippleColor = mix(litColor, whiteColor, whiteIntensity);
// Brighten areas with ripples
rippleColor = mix(rippleColor, rippleColor * rippleBrightness, rippleIntensity * 0.5);
gl_FragColor = vec4(rippleColor, 1.0);
}
`
};
// Enhanced fluid simulation factory
export function createFluidSimulation(renderer, dpr = 1) {
const simScene = new THREE.Scene();
const simCamera = new THREE.OrthographicCamera(-1, 1, 1, -1, 0, 1);
const quad = new THREE.Mesh(
new THREE.PlaneGeometry(2, 2),
new THREE.ShaderMaterial({
uniforms: THREE.UniformsUtils.clone(FluidSimShader.uniforms),
vertexShader: FluidSimShader.vertexShader,
fragmentShader: FluidSimShader.fragmentShader,
depthTest: false,
depthWrite: false
})
);
simScene.add(quad);
// Higher precision for better ripple quality
const params = {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBAFormat,
type: THREE.FloatType, // Use float for better precision
depthBuffer: false,
stencilBuffer: false
};
let width = Math.max(2, Math.floor(window.innerWidth * dpr));
let height = Math.max(2, Math.floor(window.innerHeight * dpr));
let rtA = new THREE.WebGLRenderTarget(width, height, params);
let rtB = new THREE.WebGLRenderTarget(width, height, params);
// Initialize
renderer.setRenderTarget(rtA);
renderer.clear();
renderer.setRenderTarget(rtB);
renderer.clear();
renderer.setRenderTarget(null);
quad.material.uniforms.iResolution.value.set(width, height);
quad.material.uniforms.tPrev.value = rtA.texture;
function swap() {
const tmp = rtA; rtA = rtB; rtB = tmp;
}
function update(mouseX, mouseY, strength, timeSec) {
quad.material.uniforms.iTime.value = timeSec;
if (mouseX < 0.0 || mouseY < 0.0) {
quad.material.uniforms.mouse.value.set(-1, -1, 0.0);
} else {
// Enhanced strength for better trailing effect
const enhancedStrength = Math.max(0.0, Math.min(1.0, strength * 1.5));
quad.material.uniforms.mouse.value.set(mouseX, mouseY, enhancedStrength);
}
quad.material.uniforms.tPrev.value = rtA.texture;
renderer.setRenderTarget(rtB);
renderer.render(simScene, simCamera);
renderer.setRenderTarget(null);
swap();
}
function getTexture() {
return rtA.texture;
}
function resize(w, h, newDpr = dpr) {
width = Math.max(2, Math.floor(w * newDpr));
height = Math.max(2, Math.floor(h * newDpr));
rtA.setSize(width, height);
rtB.setSize(width, height);
quad.material.uniforms.iResolution.value.set(width, height);
}
return { update, getTexture, resize };
}

View file

@ -1,341 +0,0 @@
import './style.css'
import * as THREE from 'three';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { RoomEnvironment } from 'three/addons/environments/RoomEnvironment.js';
import { EffectComposer } from 'three/addons/postprocessing/EffectComposer.js';
import { RenderPass } from 'three/addons/postprocessing/RenderPass.js';
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass.js';
// Scene setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.setFocalLength(50);
const raycaster = new THREE.Raycaster();
const mouse = new THREE.Vector2();
let isTwisting = false;
let twistProgress = 0;
const twistSpeed = 0.05; // Adjust speed
const twistStrength = 0.3; // Adjust strength
let scrollCount = 0;
const scrollThreshold = 20; // Number of scroll events to trigger the animation
// Renderer setup
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 1.2;
renderer.outputColorSpace = THREE.SRGBColorSpace;
renderer.physicallyCorrectLights = true;
document.body.appendChild(renderer.domElement);
// Post-processing: Bloom
const composer = new EffectComposer(renderer);
const renderPass = new RenderPass(scene, camera);
composer.addPass(renderPass);
const bloomPass = new UnrealBloomPass(
new THREE.Vector2(window.innerWidth, window.innerHeight),
1.0, // strength
0.45, // radius
0.85 // threshold
);
composer.addPass(bloomPass);
// Video texture for emissive "screen"-like effect on orange material
const video = document.createElement('video');
video.src = '/shader-flash.webm';
video.muted = true;
video.loop = true;
video.playsInline = true;
video.autoplay = true;
video.preload = 'auto';
const videoTexture = new THREE.VideoTexture(video);
videoTexture.colorSpace = THREE.SRGBColorSpace;
videoTexture.generateMipmaps = false;
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
// Ensure autoplay starts (muted autoplay is commonly allowed)
video.play().catch(() => {});
// Local procedural environment for better PBR response (no network)
const pmrem = new THREE.PMREMGenerator(renderer);
const roomEnv = new RoomEnvironment();
scene.environment = pmrem.fromScene(roomEnv).texture;
pmrem.dispose();
roomEnv.dispose();
scene.environment = null; // This will make the renderer's clear color visible again
// Lighting is authored below.
// Lighting
const ambientLight = new THREE.AmbientLight(0xffffff, 0.6);
scene.add(ambientLight);
const hemiLight = new THREE.HemisphereLight(0xffffff, 0x666666, 1.5);
hemiLight.position.set(0, 20, 0);
scene.add(hemiLight);
// // Key light (main directional) - angled to avoid direct reflection
// const keyLight = new THREE.DirectionalLight(0xffffff, 2.0);
// keyLight.position.set(12, 8, 8);
// keyLight.castShadow = true;
// keyLight.shadow.mapSize.width = 2048;
// keyLight.shadow.mapSize.height = 2048;
// scene.add(keyLight);
// Fill light (opposite side) - angled
const fillLight = new THREE.DirectionalLight(0xffffff, 1.2);
fillLight.position.set(-12, 6, -8);
scene.add(fillLight);
// Top light - angled to avoid direct downward reflection
const topLight = new THREE.DirectionalLight(0xffffff, 1.5);
topLight.position.set(5, 15, 5);
scene.add(topLight);
// Bottom light - angled upward
const bottomLight = new THREE.DirectionalLight(0xffffff, 0.8);
bottomLight.position.set(-3, -8, 3);
scene.add(bottomLight);
// Side lights for even illumination - angled
const leftLight = new THREE.DirectionalLight(0xffffff, 1.0);
leftLight.position.set(-12, 2, 5);
scene.add(leftLight);
const rightLight = new THREE.DirectionalLight(0xffffff, 1.0);
rightLight.position.set(12, 2, -5);
scene.add(rightLight);
// Front and back lights - angled to avoid direct camera reflection
const frontLight = new THREE.DirectionalLight(0xffffff, 0.8);
frontLight.position.set(8, 4, 12);
scene.add(frontLight);
const backLight = new THREE.DirectionalLight(0xffffff, 0.8);
backLight.position.set(-8, 4, -12);
scene.add(backLight);
// Reduced camera light
const cameraLight = new THREE.PointLight(0xffffff, 0.8, 0, 2);
camera.add(cameraLight);
scene.add(camera);
// Controls
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.25;
const loader = new GLTFLoader();
const dracoLoader = new DRACOLoader();
dracoLoader.setDecoderPath('node_modules/three/examples/jsm/libs/draco/');
loader.setDRACOLoader(dracoLoader);
let mixer = null;
loader.load('/innovation.glb', (gltf) => {
const model = gltf.scene;
scene.add(model);
// --- Define and Apply Materials ---
const glassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.05,
transmission: 1,
ior: 2,
thickness: 2,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0x000000),
transparent: true,
depthWrite: false,
alphaTest: 0
});
const lightOrangeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600, metalness: 0.05, roughness: 0.4,
envMapIntensity: 0, emissive: new THREE.Color(0xffad47),
emissiveMap: videoTexture, emissiveIntensity: 2.25
});
const orangeMeshes = ['dblsc', 'ec', 'gemini', 'infinity', 'star', 'dpd'];
const targetGlassNames = ['Cube.alt90.df'];
const sanitize = (s) => s.toLowerCase().replace(/[^a-z0-9]/g, '');
const nameMatches = (name, targets) => {
const clean = sanitize(name);
return targets.some((t) => {
const ct = sanitize(t);
return clean === ct || clean.includes(ct) || ct.includes(clean);
});
};
model.traverse((object) => {
if (object.isMesh) {
object.castShadow = true;
object.receiveShadow = true;
if (nameMatches(object.name, targetGlassNames)) {
// Create outer glass shell
object.material = glassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2; // Render outer glass last
// Create inner glass shell for better depth perception
const innerShell = object.clone();
innerShell.material = glassMaterial.clone();
innerShell.material.side = THREE.DoubleSide;
innerShell.material.depthWrite = false;
innerShell.material.thickness = 4; // Thinner inner layer
innerShell.material.transmission = 0.8; // More transparent inner layer
innerShell.renderOrder = 1; // Render inner glass before outer
// Scale inner shell slightly smaller
innerShell.scale.multiplyScalar(0.95);
object.parent.add(innerShell);
} else if (nameMatches(object.name, orangeMeshes)) {
object.material = lightOrangeMaterial.clone();
object.renderOrder = 0; // Render orange objects first
}
}
});
// Compute bounds for camera framing
const box = new THREE.Box3().setFromObject(model);
const size = box.getSize(new THREE.Vector3());
const center = box.getCenter(new THREE.Vector3());
// Set up animations
if (gltf.animations && gltf.animations.length > 0) {
mixer = new THREE.AnimationMixer(model);
gltf.animations.forEach((clip) => {
mixer.clipAction(clip).play();
});
mixer.timeScale = 3.0;
}
// Position camera
const maxDim = Math.max(size.x, size.y, size.z);
camera.position.set(center.x, center.y, center.z + maxDim * 2);
controls.target.copy(center);
controls.update();
}, undefined, (error) => {
console.error('Error loading model:', error);
});
const clock = new THREE.Clock();
function onMouseScroll(event) {
// Only count scrolls if the animation is not already running
if (!isTwisting) {
// You can check event.deltaY to determine scroll direction
if (event.deltaY !== 0) {
scrollCount++;
console.log(`Scroll count: ${scrollCount}`); // For debugging
}
if (scrollCount >= scrollThreshold) {
isTwisting = true;
twistProgress = 0;
scrollCount = 0; // Reset the counter
}
}
}
function twistMesh(mesh, progress) {
if (!mesh || !mesh.geometry || !mesh.geometry.attributes.position) {
return;
}
const positions = mesh.geometry.attributes.position;
// Store original positions on the first run
if (!mesh.geometry.userData.originalPositions) {
mesh.geometry.userData.originalPositions = new Float32Array(positions.array);
// Also store bounding box data
const box = new THREE.Box3().setFromObject(mesh);
mesh.geometry.userData.bounds = {
size: box.getSize(new THREE.Vector3()),
center: box.getCenter(new THREE.Vector3())
};
}
const original = mesh.geometry.userData.originalPositions;
const { size, center } = mesh.geometry.userData.bounds;
const totalHeight = size.y; // Use Y-size for the twist axis
for (let i = 0; i < positions.count; i++) {
const x = original[i * 3];
const y = original[i * 3 + 1];
const z = original[i * 3 + 2];
// Normalize the y-position from 0 to 1 based on the mesh's height
const normalizedY = (y - center.y + totalHeight / 2) / totalHeight;
// Calculate the twist angle based on normalized y and progress
const twistAngle = normalizedY * progress * twistStrength * 2 * Math.PI;
// Apply rotation to the X and Z coordinates
positions.setX(i, x * Math.cos(twistAngle) - z * Math.sin(twistAngle));
positions.setY(i, y); // Y remains unchanged as it's the axis of rotation
positions.setZ(i, x * Math.sin(twistAngle) + z * Math.cos(twistAngle));
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Attach the click event listener
window.addEventListener('wheel', onMouseScroll, {passive: true});
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
if (mixer) mixer.update(delta);
controls.update();
// The main loop for the twisting animation
if (isTwisting) {
twistProgress += twistSpeed;
if (twistProgress > 1.0) {
twistProgress = 1.0;
isTwisting = false;
}
// Traverse the entire scene to find all meshes to twist
scene.traverse((object) => {
if (object.isMesh) {
twistMesh(object, twistProgress);
}
});
}
composer.render();
}
animate();
window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
composer.setSize(window.innerWidth, window.innerHeight);
});

View file

@ -1,643 +0,0 @@
import './style.css'
import * as THREE from 'three';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { RoomEnvironment } from 'three/addons/environments/RoomEnvironment.js';
import { EffectComposer } from 'three/addons/postprocessing/EffectComposer.js';
import { RenderPass } from 'three/addons/postprocessing/RenderPass.js';
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass.js';
// Scene setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.setFocalLength(50);
const raycaster = new THREE.Raycaster();
const mouse = new THREE.Vector2();
// Transition state management
let currentScene = 0; // 0: innovation, 1: agility, 2: storytelling
let isTransitioning = false;
let isTwisting = false;
let twistProgress = 0;
const twistSpeed = 0.02; // Easily adjustable twist speed
const twistStrength = 0.3;
const fadeSpeed = 1; // Easily adjustable fade speed
const transitionDuration = 1; // Easily adjustable transition duration (seconds)
let scrollCount = 0;
const scrollThreshold = 10; // Changed to 10 as requested
let transitionStartTime = 0;
// Scene objects
let currentModel = null;
let nextModel = null;
let mixer = null;
let nextMixer = null;
let autoRotationAngle = 0;
// Renderer setup
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 1.2;
renderer.outputColorSpace = THREE.SRGBColorSpace;
renderer.physicallyCorrectLights = true;
document.body.appendChild(renderer.domElement);
// Post-processing: Bloom
const composer = new EffectComposer(renderer);
const renderPass = new RenderPass(scene, camera);
composer.addPass(renderPass);
const bloomPass = new UnrealBloomPass(
new THREE.Vector2(window.innerWidth, window.innerHeight),
1.0, // strength
0.45, // radius
0.85 // threshold
);
composer.addPass(bloomPass);
// Video texture for emissive "screen"-like effect on orange material
const video = document.createElement('video');
video.src = '/shader-flash.webm';
video.muted = true;
video.loop = true;
video.playsInline = true;
video.autoplay = true;
video.preload = 'auto';
const videoTexture = new THREE.VideoTexture(video);
videoTexture.colorSpace = THREE.SRGBColorSpace;
videoTexture.generateMipmaps = false;
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
// Ensure autoplay starts (muted autoplay is commonly allowed)
video.play().catch(() => {});
// Local procedural environment for better PBR response (no network)
const pmrem = new THREE.PMREMGenerator(renderer);
const roomEnv = new RoomEnvironment();
scene.environment = pmrem.fromScene(roomEnv).texture;
pmrem.dispose();
roomEnv.dispose();
scene.environment = null; // This will make the renderer's clear color visible again
// Consistent Lighting Setup
const ambientLight = new THREE.AmbientLight(0xffffff, 0.6);
scene.add(ambientLight);
const hemiLight = new THREE.HemisphereLight(0xffffff, 0x666666, 1.5);
hemiLight.position.set(0, 20, 0);
scene.add(hemiLight);
const fillLight = new THREE.DirectionalLight(0xffffff, 1.2);
fillLight.position.set(-12, 6, -8);
scene.add(fillLight);
const topLight = new THREE.DirectionalLight(0xffffff, 1.5);
topLight.position.set(5, 15, 5);
scene.add(topLight);
const bottomLight = new THREE.DirectionalLight(0xffffff, 0.8);
bottomLight.position.set(-3, -8, 3);
scene.add(bottomLight);
const leftLight = new THREE.DirectionalLight(0xffffff, 1.0);
leftLight.position.set(-12, 2, 5);
scene.add(leftLight);
const rightLight = new THREE.DirectionalLight(0xffffff, 1.0);
rightLight.position.set(12, 2, -5);
scene.add(rightLight);
const frontLight = new THREE.DirectionalLight(0xffffff, 0.8);
frontLight.position.set(8, 4, 12);
scene.add(frontLight);
const backLight = new THREE.DirectionalLight(0xffffff, 0.8);
backLight.position.set(-8, 4, -12);
scene.add(backLight);
const cameraLight = new THREE.PointLight(0xffffff, 0.8, 0, 2);
camera.add(cameraLight);
scene.add(camera);
// Controls
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.25;
// Material definitions
// Clear thick glass for innovation
const innovationGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.05,
transmission: 1,
ior: 2,
thickness: 2,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0x000000),
transparent: true,
depthWrite: false,
alphaTest: 0
});
// Slightly frosted glass for agility and storytelling
const frostedGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.0,
roughness: 0.25,
transmission: 1.0,
ior: 1.5,
thickness: 2.0,
clearcoat: 0.75,
clearcoatRoughness: 0.25,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 1.5,
envMapIntensity: 1.25,
specularIntensity: 1.0,
specularColor: new THREE.Color(0xffffff),
transparent: true,
depthWrite: false,
side: THREE.DoubleSide
});
// Orange material with video shader for innovation
const lightOrangeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600,
metalness: 0.05,
roughness: 0.4,
envMapIntensity: 0,
emissive: new THREE.Color(0xffad47),
emissiveMap: videoTexture,
emissiveIntensity: 2.25
});
const loader = new GLTFLoader();
const dracoLoader = new DRACOLoader();
dracoLoader.setDecoderPath('node_modules/three/examples/jsm/libs/draco/');
loader.setDRACOLoader(dracoLoader);
// Apply materials based on model type
function applyMaterials(model, modelType) {
console.log(`=== Material Assignment Debug for ${modelType} ===`);
let meshCount = 0;
model.traverse((object) => {
if (object.isMesh) {
meshCount++;
console.log(`Found mesh: "${object.name}"`);
const previousMaterial = object.material;
object.castShadow = true;
object.receiveShadow = true;
if (modelType === 'innovation') {
// Innovation-specific material logic
const orangeMeshes = ['dblsc', 'ec', 'gemini', 'infinity', 'star', 'dpd'];
const targetGlassNames = ['Cube.alt90.df'];
const sanitize = (s) => s.toLowerCase().replace(/[^a-z0-9]/g, '');
const nameMatches = (name, targets) => {
const clean = sanitize(name);
return targets.some((t) => {
const ct = sanitize(t);
return clean === ct || clean.includes(ct) || ct.includes(clean);
});
};
if (nameMatches(object.name, targetGlassNames)) {
// Create outer glass shell with innovation-specific material
object.material = innovationGlassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2;
// Create inner glass shell
const innerShell = object.clone();
innerShell.material = innovationGlassMaterial.clone();
innerShell.material.side = THREE.DoubleSide;
innerShell.material.depthWrite = false;
innerShell.material.thickness = 4;
innerShell.material.transmission = 0.8;
innerShell.renderOrder = 1;
innerShell.scale.multiplyScalar(0.95);
object.parent.add(innerShell);
} else if (nameMatches(object.name, orangeMeshes)) {
object.material = lightOrangeMaterial.clone();
object.renderOrder = 0;
}
} else {
// Agility and Storytelling use frosted glass material for all meshes
if (object.name.startsWith('base')) {
console.log(` → Applying frosted glass material to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
} else {
console.log(` → Applying frosted glass material (fallback) to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
}
}
object.material.needsUpdate = true;
// Cleanup previous materials
if (Array.isArray(previousMaterial)) {
previousMaterial.forEach((mat) => mat && mat.dispose && mat.dispose());
} else if (previousMaterial && previousMaterial.dispose) {
previousMaterial.dispose();
}
}
});
console.log(`Total meshes processed: ${meshCount}`);
console.log(`=== End Material Assignment Debug for ${modelType} ===`);
}
// Center and frame model with camera
function centerAndFrameModel(model, targetCamera = camera) {
const box = new THREE.Box3().setFromObject(model);
const center = box.getCenter(new THREE.Vector3());
model.position.sub(center);
model.updateMatrixWorld(true);
const size = box.getSize(new THREE.Vector3());
const maxDim = Math.max(size.x, size.y, size.z);
// Only set camera position if it's not already positioned (avoid reset during transitions)
if (!isTransitioning) {
targetCamera.position.set(0, 0, maxDim * 2);
controls.target.set(0, 0, 0);
controls.update();
}
}
// Setup animations based on model type
function setupAnimations(model, gltf, modelType) {
if (gltf.animations && gltf.animations.length > 0) {
const animMixer = new THREE.AnimationMixer(model);
gltf.animations.forEach((clip) => {
const action = animMixer.clipAction(clip);
if (modelType === 'innovation') {
// PingPong loop for innovation
action.loop = THREE.LoopPingPong;
action.play();
} else if (modelType === 'agility') {
// Regular loop for agility
action.loop = THREE.LoopRepeat;
action.play();
} else if (modelType === 'storytelling') {
// Play once for storytelling
action.loop = THREE.LoopOnce;
action.clampWhenFinished = true;
action.play();
}
});
if (modelType === 'innovation') {
animMixer.timeScale = 3.0; // Keep existing timeScale for innovation
}
return animMixer;
}
return null;
}
// Load model function
function loadModel(filename, modelType, onLoadCallback) {
loader.load(`/${filename}`, (gltf) => {
const model = gltf.scene;
// Apply materials
applyMaterials(model, modelType);
// Setup animations
const animMixer = setupAnimations(model, gltf, modelType);
// Center and frame model
centerAndFrameModel(model);
if (onLoadCallback) {
onLoadCallback(model, animMixer);
}
}, undefined, (error) => {
console.error(`Error loading ${filename}:`, error);
});
}
// Load initial innovation model
loadModel('innovation.glb', 'innovation', (model, animMixer) => {
currentModel = model;
mixer = animMixer;
scene.add(currentModel);
});
// Twist animation function
function twistMesh(mesh, progress) {
if (!mesh || !mesh.geometry || !mesh.geometry.attributes.position) {
return;
}
const positions = mesh.geometry.attributes.position;
// Store original positions on the first run
if (!mesh.geometry.userData.originalPositions) {
mesh.geometry.userData.originalPositions = new Float32Array(positions.array);
// Also store bounding box data
const box = new THREE.Box3().setFromObject(mesh);
mesh.geometry.userData.bounds = {
size: box.getSize(new THREE.Vector3()),
center: box.getCenter(new THREE.Vector3())
};
}
const original = mesh.geometry.userData.originalPositions;
const { size, center } = mesh.geometry.userData.bounds;
const totalHeight = size.y; // Use Y-size for the twist axis
for (let i = 0; i < positions.count; i++) {
const x = original[i * 3];
const y = original[i * 3 + 1];
const z = original[i * 3 + 2];
// Normalize the y-position from 0 to 1 based on the mesh's height
const normalizedY = (y - center.y + totalHeight / 2) / totalHeight;
// Calculate the twist angle based on normalized y and progress
const twistAngle = normalizedY * progress * twistStrength * 2 * Math.PI;
// Apply rotation to the X and Z coordinates
positions.setX(i, x * Math.cos(twistAngle) - z * Math.sin(twistAngle));
positions.setY(i, y); // Y remains unchanged as it's the axis of rotation
positions.setZ(i, x * Math.sin(twistAngle) + z * Math.cos(twistAngle));
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Reset mesh geometry to original state
function resetMeshGeometry(mesh) {
if (!mesh || !mesh.geometry || !mesh.geometry.userData.originalPositions) {
return;
}
const positions = mesh.geometry.attributes.position;
const original = mesh.geometry.userData.originalPositions;
for (let i = 0; i < positions.count; i++) {
positions.setXYZ(i, original[i * 3], original[i * 3 + 1], original[i * 3 + 2]);
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// Start transition to next scene
function startTransition() {
if (isTransitioning || currentScene >= 2) return;
isTransitioning = true;
isTwisting = true;
twistProgress = 0;
transitionStartTime = performance.now();
// Load next model
let nextModelFile = '';
let nextModelType = '';
if (currentScene === 0) {
nextModelFile = 'agility.glb';
nextModelType = 'agility';
} else if (currentScene === 1) {
nextModelFile = 'storytelling.glb';
nextModelType = 'storytelling';
}
if (nextModelFile) {
loadModel(nextModelFile, nextModelType, (model, animMixer) => {
nextModel = model;
nextMixer = animMixer;
// Start next model as invisible and positioned below
nextModel.position.y = -10;
nextModel.traverse((obj) => {
if (obj.material) {
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = 0;
});
} else {
obj.material.transparent = true;
obj.material.opacity = 0;
}
}
});
scene.add(nextModel);
});
}
}
// Update transition animation
function updateTransition(deltaTime) {
if (!isTransitioning) return;
const elapsed = (performance.now() - transitionStartTime) / 1000;
const transitionProgress = Math.min(elapsed / transitionDuration, 1);
// Smooth easing function (ease-in-out)
const easeInOut = (t) => t * t * (3 - 2 * t);
const easedProgress = easeInOut(transitionProgress);
if (currentModel) {
// Move current model up and fade out
currentModel.position.y = easedProgress * 10;
currentModel.traverse((obj) => {
if (obj.material) {
const targetOpacity = 1 - easedProgress;
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = targetOpacity;
});
} else {
obj.material.transparent = true;
obj.material.opacity = targetOpacity;
}
}
});
}
if (nextModel) {
// Move next model to center and fade in
nextModel.position.y = -10 + (easedProgress * 10);
nextModel.traverse((obj) => {
if (obj.material) {
const targetOpacity = easedProgress;
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.transparent = true;
mat.opacity = targetOpacity;
});
} else {
obj.material.transparent = true;
obj.material.opacity = targetOpacity;
}
}
});
}
// Complete transition
if (transitionProgress >= 1) {
// Remove current model
if (currentModel) {
scene.remove(currentModel);
// Clean up geometry user data
currentModel.traverse((obj) => {
if (obj.geometry && obj.geometry.userData.originalPositions) {
delete obj.geometry.userData.originalPositions;
delete obj.geometry.userData.bounds;
}
});
}
// Switch to next model
if (nextModel) {
currentModel = nextModel;
mixer = nextMixer;
// Reset position and opacity
currentModel.position.y = 0;
currentModel.traverse((obj) => {
if (obj.material) {
if (Array.isArray(obj.material)) {
obj.material.forEach(mat => {
mat.opacity = 1;
if (currentScene === 2) { // Keep transparency for storytelling glass
mat.transparent = mat.transmission > 0;
} else {
mat.transparent = mat.transmission > 0;
}
});
} else {
obj.material.opacity = 1;
if (currentScene === 2) { // Keep transparency for storytelling glass
obj.material.transparent = obj.material.transmission > 0;
} else {
obj.material.transparent = obj.material.transmission > 0;
}
}
}
});
}
nextModel = null;
nextMixer = null;
isTransitioning = false;
isTwisting = false;
twistProgress = 0;
currentScene++;
scrollCount = 0;
console.log(`Transition complete. Current scene: ${currentScene}`);
}
}
// Scroll event handler
function onMouseScroll(event) {
// Only count downward scrolls and if not currently transitioning
if (!isTransitioning && event.deltaY > 0) {
scrollCount++;
console.log(`Scroll count: ${scrollCount}`);
if (scrollCount >= scrollThreshold) {
startTransition();
}
}
}
// Attach scroll event listener
window.addEventListener('wheel', onMouseScroll, {passive: true});
// Animation loop
const clock = new THREE.Clock();
function animate() {
requestAnimationFrame(animate);
const delta = clock.getDelta();
// Update mixers
if (mixer) mixer.update(delta);
if (nextMixer) nextMixer.update(delta);
// Update transition
if (isTransitioning) {
updateTransition(delta);
// Apply twist during transition
if (isTwisting && currentModel) {
twistProgress += twistSpeed;
if (twistProgress > 1.0) {
twistProgress = 1.0;
// Reset geometry after twist completes
// currentModel.traverse((object) => {
// if (object.isMesh) {
// resetMeshGeometry(object);
// }
// });
isTwisting = false;
} else {
// Apply twist to current model
currentModel.traverse((object) => {
if (object.isMesh) {
twistMesh(object, twistProgress);
}
});
}
}
}
// Turntable rotation for current model
if (currentModel && !isTransitioning) {
autoRotationAngle += delta * 0.5;
currentModel.rotation.y = autoRotationAngle;
}
controls.update();
composer.render();
}
animate();
// Handle window resize
window.addEventListener('resize', () => {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
composer.setSize(window.innerWidth, window.innerHeight);
});

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,97 @@
import * as THREE from 'three';
// Video texture for emissive "screen"-like effect on orange material
export const video = document.createElement('video');
video.src = '/shader-flash.webm';
video.muted = true;
video.loop = true;
video.playsInline = true;
video.autoplay = true;
video.preload = 'auto';
export const videoTexture = new THREE.VideoTexture(video);
videoTexture.colorSpace = THREE.SRGBColorSpace;
videoTexture.generateMipmaps = false;
videoTexture.minFilter = THREE.LinearFilter;
videoTexture.magFilter = THREE.LinearFilter;
// Ensure autoplay starts (muted autoplay is commonly allowed)
video.play().catch(() => { });
// Bold glass material (starts rough, will transition to clear)
export const boldGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.5,
transmission: 1,
ior: 2,
thickness: 2,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0xffffff),
transparent: true,
depthWrite: false,
alphaTest: 0
});
// Orange wireframe material for bold Cubewire mesh
export const boldWireframeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600,
metalness: 0.05,
roughness: 0.5
});
// Clear thick glass for innovation (starts with animated values)
export const innovationGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.2,
roughness: 0.05,
transmission: 1,
ior: 1.0,
thickness: 1.0,
clearcoat: 1.0,
clearcoatRoughness: 0.1,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 0.8,
envMapIntensity: 0,
specularIntensity: 1.0,
specularColor: new THREE.Color(0x000000),
transparent: true,
depthWrite: false,
alphaTest: 0
});
// Slightly frosted glass for agility and storytelling
export const frostedGlassMaterial = new THREE.MeshPhysicalMaterial({
color: 0xffffff,
metalness: 0.0,
roughness: 0.25,
transmission: 1.0,
ior: 1.5,
thickness: 2.0,
clearcoat: 0.75,
clearcoatRoughness: 0.25,
attenuationColor: new THREE.Color(0xffffff),
attenuationDistance: 1.5,
envMapIntensity: 1.25,
specularIntensity: 1.0,
specularColor: new THREE.Color(0xffffff),
transparent: true,
depthWrite: false,
side: THREE.DoubleSide
});
// Orange material with video shader for innovation
export const lightOrangeMaterial = new THREE.MeshStandardMaterial({
color: 0xff8600,
metalness: 0.05,
roughness: 0.4,
envMapIntensity: 0,
emissive: new THREE.Color(0xffad47),
emissiveMap: videoTexture,
emissiveIntensity: 2.25
});

229
src/modelManager.js Normal file
View file

@ -0,0 +1,229 @@
import * as THREE from 'three';
import {
boldGlassMaterial,
boldWireframeMaterial,
innovationGlassMaterial,
frostedGlassMaterial,
lightOrangeMaterial
} from './materialDefinitions.js';
import { boldRoughnessAnimation, innovationGlassAnimation } from './animationManager.js';
// Apply materials based on model type
export function applyMaterials(model, modelType) {
console.log(`=== Material Assignment Debug for ${modelType} ===`);
let meshCount = 0;
model.traverse((object) => {
if (object.isMesh) {
meshCount++;
console.log(`Found mesh: "${object.name}"`);
const previousMaterial = object.material;
object.castShadow = true;
object.receiveShadow = true;
if (modelType === 'bold') {
// Bold-specific material logic
if (object.name === 'Cube') {
console.log(` → Applying bold glass material to "${object.name}"`);
object.material = boldGlassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2;
// Store material reference for roughness animation
boldRoughnessAnimation.materials.push(object.material);
} else if (object.name === 'Cubewire') {
console.log(` → Applying wireframe material to "${object.name}"`);
object.material = boldWireframeMaterial.clone();
object.renderOrder = 1;
} else {
console.log(` → Applying bold glass material (fallback) to "${object.name}"`);
object.material = boldGlassMaterial.clone();
// Store material reference for roughness animation
boldRoughnessAnimation.materials.push(object.material);
}
} else if (modelType === 'innovation') {
// Innovation-specific material logic
const orangeMeshes = ['dblsc', 'ec', 'gemini', 'infinity', 'star', 'dpd'];
const targetGlassNames = ['Cube.alt90.df'];
const sanitize = (s) => s.toLowerCase().replace(/[^a-z0-9]/g, '');
const nameMatches = (name, targets) => {
const clean = sanitize(name);
return targets.some((t) => {
const ct = sanitize(t);
return clean === ct || clean.includes(ct) || ct.includes(clean);
});
};
if (nameMatches(object.name, targetGlassNames)) {
// Create outer glass shell with innovation-specific material
object.material = innovationGlassMaterial.clone();
object.material.side = THREE.DoubleSide;
object.material.depthWrite = false;
object.renderOrder = 2;
// Store material reference for animation
innovationGlassAnimation.materials.push(object.material);
// Create inner glass shell
const innerShell = object.clone();
innerShell.material = innovationGlassMaterial.clone();
innerShell.material.side = THREE.DoubleSide;
innerShell.material.depthWrite = false;
innerShell.material.transmission = 0.8;
innerShell.renderOrder = 1;
innerShell.scale.multiplyScalar(0.95);
// Store inner shell material reference for animation too
innovationGlassAnimation.materials.push(innerShell.material);
object.parent.add(innerShell);
} else if (nameMatches(object.name, orangeMeshes)) {
object.material = lightOrangeMaterial.clone();
object.renderOrder = 0;
}
} else {
// Agility and Storytelling use frosted glass material for all meshes
if (object.name.startsWith('base')) {
console.log(` → Applying frosted glass material to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
} else {
console.log(` → Applying frosted glass material (fallback) to "${object.name}"`);
object.material = frostedGlassMaterial.clone();
}
}
object.material.needsUpdate = true;
// Cleanup previous materials
if (Array.isArray(previousMaterial)) {
previousMaterial.forEach((mat) => mat && mat.dispose && mat.dispose());
} else if (previousMaterial && previousMaterial.dispose) {
previousMaterial.dispose();
}
}
});
console.log(`Total meshes processed: ${meshCount}`);
console.log(`=== End Material Assignment Debug for ${modelType} ===`);
}
// Center and frame model with camera
export function centerAndFrameModel(model, targetCamera, controls) {
const box = new THREE.Box3().setFromObject(model);
const center = box.getCenter(new THREE.Vector3());
model.position.sub(center);
model.updateMatrixWorld(true);
// Only set camera position if it's not already positioned (avoid reset during transitions)
// Use fixed camera distance that's further away from the origin
const fixedCameraDistance = 50; // Fixed distance, much further than before
// Calculate isometric-like position with 35-degree angles
const angle = 35 * Math.PI / 180; // Convert 35 degrees to radians
const cosAngle = Math.cos(angle);
const x = fixedCameraDistance * cosAngle;
const y = fixedCameraDistance * cosAngle;
const z = fixedCameraDistance * cosAngle;
targetCamera.position.set(x, y, z);
controls.target.set(0, 0, 0);
// Set distance limits to lock the camera at this distance
controls.minDistance = fixedCameraDistance;
controls.maxDistance = fixedCameraDistance;
controls.update();
console.log(`Camera positioned at: x=${x}, y=${y}, z=${z}, distance=${fixedCameraDistance}`);
}
// Setup animations based on model type
export function setupAnimations(model, gltf, modelType) {
if (gltf.animations && gltf.animations.length > 0) {
const animMixer = new THREE.AnimationMixer(model);
gltf.animations.forEach((clip) => {
const action = animMixer.clipAction(clip);
if (modelType === 'bold') {
// Play once for bold
action.loop = THREE.LoopOnce;
action.clampWhenFinished = true;
action.play();
console.log(`Bold animation started: ${clip.name}`);
} else if (modelType === 'innovation') {
// PingPong loop for innovation
action.loop = THREE.LoopPingPong;
action.play();
console.log(`Innovation animation started: ${clip.name} (PingPong)`);
} else if (modelType === 'agility') {
// Regular loop for agility
action.loop = THREE.LoopRepeat;
action.play();
console.log(`Agility animation started: ${clip.name} (Loop)`);
} else if (modelType === 'storytelling') {
// Play once for storytelling
action.loop = THREE.LoopOnce;
action.clampWhenFinished = true;
action.play();
console.log(`Storytelling animation started: ${clip.name}`);
}
});
if (modelType === 'innovation') {
animMixer.timeScale = 3.0; // Keep existing timeScale for innovation
console.log('Innovation animation timeScale set to 3.0');
}
return animMixer;
}
return null;
}
// Reset mesh geometry to original state
export function resetMeshGeometry(mesh) {
if (!mesh || !mesh.geometry || !mesh.geometry.userData.originalPositions) {
return;
}
const positions = mesh.geometry.attributes.position;
const original = mesh.geometry.userData.originalPositions;
for (let i = 0; i < positions.count; i++) {
positions.setXYZ(i, original[i * 3], original[i * 3 + 1], original[i * 3 + 2]);
}
positions.needsUpdate = true;
mesh.geometry.computeVertexNormals();
}
// FIXED: Clean up geometry data completely
export function cleanupGeometryData(model) {
if (!model) return;
model.traverse((object) => {
if (object.isMesh && object.geometry && object.geometry.userData) {
delete object.geometry.userData.originalPositions;
delete object.geometry.userData.originalWorldPositions;
delete object.geometry.userData.inverseWorldMatrix;
}
});
}
// Create model from preloaded data - FIXED: Always create fresh geometry
export function createModelFromPreloaded(modelType, preloadedModels, camera, controls) {
const preloadedData = preloadedModels[modelType];
if (!preloadedData) {
console.error(`Preloaded model not found: ${modelType}`);
return { model: null, animMixer: null };
}
console.log(`Creating model from preloaded data: ${modelType}`);
// Clear animation materials arrays when creating new models
if (modelType === 'bold') {
boldRoughnessAnimation.materials = [];
} else if (modelType === 'innovation') {
innovationGlassAnimation.materials = [];
}
// Clone the scene deeply to ensure fresh geometry
const model = preloadedData.scene.clone(true);
// IMPORTANT: Clone all geometries to ensure they're independent
model.traverse((object) => {
if (object.isMesh && object.geometry) {
object.geometry = object.geometry.clone();
}
});
// Apply materials
applyMaterials(model, modelType);
// Setup animations
const animMixer = setupAnimations(model, preloadedData.gltf, modelType);
// Center and frame model
centerAndFrameModel(model, camera, controls);
console.log(`Model created successfully: ${modelType}`);
return { model, animMixer };
}

78
src/sceneLoader.js Normal file
View file

@ -0,0 +1,78 @@
import * as THREE from 'three';
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader.js';
import { DRACOLoader } from 'three/addons/loaders/DRACOLoader.js';
export class SceneLoader {
constructor() {
this.loadingScreen = document.getElementById('loading-screen');
this.loadingText = document.getElementById('loading-text');
this.loadingProgressBar = document.getElementById('loading-progress-bar');
this.loadingPercentage = document.getElementById('loading-percentage');
this.modelsToLoad = [
{ file: 'bold.glb', type: 'bold' },
{ file: 'innovation.glb', type: 'innovation' },
{ file: 'agility.glb', type: 'agility' },
{ file: 'storytelling.glb', type: 'storytelling' }
];
this.loadedModels = {};
this.loadedCount = 0;
this.totalModels = this.modelsToLoad.length;
}
setLoadingMessage(message) {
this.loadingText.textContent = message;
}
updateProgress(progress) {
const percentage = Math.round(progress * 100);
this.loadingProgressBar.style.width = `${percentage}%`;
this.loadingPercentage.textContent = `${percentage}%`;
}
hideLoadingScreen() {
this.loadingScreen.classList.add('hidden');
setTimeout(() => {
this.loadingScreen.style.display = 'none';
}, 800);
}
async loadAllModels() {
return new Promise((resolve) => {
const loader = new GLTFLoader();
const dracoLoader = new DRACOLoader();
dracoLoader.setDecoderPath('node_modules/three/examples/jsm/libs/draco/');
loader.setDRACOLoader(dracoLoader);
this.modelsToLoad.forEach((modelInfo, index) => {
this.setLoadingMessage(`Loading experience...`);
loader.load(`/${modelInfo.file}`,
(gltf) => {
this.loadedModels[modelInfo.type] = {
scene: gltf.scene,
animations: gltf.animations,
gltf: gltf
};
this.loadedCount++;
const progress = this.loadedCount / this.totalModels;
this.updateProgress(progress);
if (this.loadedCount === this.totalModels) {
this.setLoadingMessage('Initializing Experience...');
setTimeout(() => {
this.hideLoadingScreen();
resolve(this.loadedModels);
}, 500);
}
},
(progress) => {
const fileProgress = progress.loaded / progress.total;
const totalProgress = (this.loadedCount + fileProgress) / this.totalModels;
this.updateProgress(totalProgress);
},
(error) => {
console.error(`Error loading ${modelInfo.file}:`, error);
}
);
});
});
}
}

108
src/sceneSetup.js Normal file
View file

@ -0,0 +1,108 @@
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
import { RoomEnvironment } from 'three/addons/environments/RoomEnvironment.js';
import { EffectComposer } from 'three/addons/postprocessing/EffectComposer.js';
import { RenderPass } from 'three/addons/postprocessing/RenderPass.js';
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass.js';
export function createScene() {
// Scene setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.setFocalLength(50);
const raycaster = new THREE.Raycaster();
const mouse = new THREE.Vector2();
// Renderer setup
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(Math.min(window.devicePixelRatio, 2));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0x000000);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 1.2;
renderer.outputColorSpace = THREE.SRGBColorSpace;
renderer.physicallyCorrectLights = true;
document.body.appendChild(renderer.domElement);
// Post-processing: Bloom
const composer = new EffectComposer(renderer);
const renderPass = new RenderPass(scene, camera);
composer.addPass(renderPass);
const bloomPass = new UnrealBloomPass(
new THREE.Vector2(window.innerWidth, window.innerHeight),
1.0, // strength
0.45, // radius
0.85 // threshold
);
composer.addPass(bloomPass);
// Local procedural environment for better PBR response (no network)
const pmrem = new THREE.PMREMGenerator(renderer);
const roomEnv = new RoomEnvironment();
scene.environment = pmrem.fromScene(roomEnv).texture;
pmrem.dispose();
roomEnv.dispose();
scene.environment = null; // This will make the renderer's clear color visible again
return { scene, camera, renderer, composer, raycaster, mouse };
}
export function setupLighting(scene, camera) {
// Consistent Lighting Setup
const ambientLight = new THREE.AmbientLight(0xffffff, 0.6);
scene.add(ambientLight);
const hemiLight = new THREE.HemisphereLight(0xffffff, 0x666666, 1.5);
hemiLight.position.set(0, 20, 0);
scene.add(hemiLight);
const fillLight = new THREE.DirectionalLight(0xffffff, 1.2);
fillLight.position.set(-12, 6, -8);
scene.add(fillLight);
const topLight = new THREE.DirectionalLight(0xffffff, 1.5);
topLight.position.set(5, 15, 5);
scene.add(topLight);
const bottomLight = new THREE.DirectionalLight(0xffffff, 0.8);
bottomLight.position.set(-3, -8, 3);
scene.add(bottomLight);
const leftLight = new THREE.DirectionalLight(0xffffff, 1.0);
leftLight.position.set(-12, 2, 5);
scene.add(leftLight);
const rightLight = new THREE.DirectionalLight(0xffffff, 1.0);
rightLight.position.set(12, 2, -5);
scene.add(rightLight);
const frontLight = new THREE.DirectionalLight(0xffffff, 0.8);
frontLight.position.set(8, 4, 12);
scene.add(frontLight);
const backLight = new THREE.DirectionalLight(0xffffff, 0.8);
backLight.position.set(-8, 4, -12);
scene.add(backLight);
const cameraLight = new THREE.PointLight(0xffffff, 0.8, 0, 2);
camera.add(cameraLight);
scene.add(camera);
}
export function setupControls(camera, renderer) {
// Controls with zoom disabled and camera constraints
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.25;
controls.enableZoom = false; // Disable zoom
// Add camera constraints to prevent extreme angles
controls.maxPolarAngle = Math.PI * 0.8; // Prevent looking too far up
controls.minPolarAngle = Math.PI * 0.2; // Prevent looking too far down
console.log('Orbit controls initialized with camera constraints');
return controls;
}

328
src/starfield.js Normal file
View file

@ -0,0 +1,328 @@
import * as THREE from 'three';
export function createStarfield(scene) {
const starCount = 12000;
const starDistance = 300;
// Create geometry for stars
const starGeometry = new THREE.BufferGeometry();
const starPositions = new Float32Array(starCount * 3);
const starSizes = new Float32Array(starCount);
// Store original positions, current positions, and sizes
const originalPositions = new Float32Array(starCount * 3);
const currentPositions = new Float32Array(starCount * 3);
const originalSizes = new Float32Array(starCount);
const currentSizes = new Float32Array(starCount);
// Generate random positions in a sphere around the scene
for (let i = 0; i < starCount; i++) {
const i3 = i * 3;
const radius = Math.random() * starDistance + 50;
const theta = Math.random() * Math.PI * 2;
const phi = Math.acos(2 * Math.random() - 1);
const x = radius * Math.sin(phi) * Math.cos(theta);
const y = radius * Math.sin(phi) * Math.sin(theta);
const z = radius * Math.cos(phi);
// Store both original and current positions
originalPositions[i3] = x;
originalPositions[i3 + 1] = y;
originalPositions[i3 + 2] = z;
currentPositions[i3] = x;
currentPositions[i3 + 1] = y;
currentPositions[i3 + 2] = z;
starPositions[i3] = x;
starPositions[i3 + 1] = y;
starPositions[i3 + 2] = z;
// Store original and current sizes
const baseSize = Math.random() * 0.2 + 0.1;
originalSizes[i] = baseSize;
currentSizes[i] = baseSize;
starSizes[i] = baseSize;
}
starGeometry.setAttribute('position', new THREE.BufferAttribute(starPositions, 3));
starGeometry.setAttribute('size', new THREE.BufferAttribute(starSizes, 1));
// Star material with size attenuation
const starMaterial = new THREE.PointsMaterial({
color: 0xffffff,
size: 0.3,
sizeAttenuation: true,
transparent: true,
opacity: 0.8,
vertexColors: false
});
const stars = new THREE.Points(starGeometry, starMaterial);
scene.add(stars);
// Distant stars layer
const distantStarCount = 4000;
const distantStarGeometry = new THREE.BufferGeometry();
const distantStarPositions = new Float32Array(distantStarCount * 3);
const distantStarSizes = new Float32Array(distantStarCount);
const distantOriginalPositions = new Float32Array(distantStarCount * 3);
const distantCurrentPositions = new Float32Array(distantStarCount * 3);
const distantOriginalSizes = new Float32Array(distantStarCount);
const distantCurrentSizes = new Float32Array(distantStarCount);
for (let i = 0; i < distantStarCount; i++) {
const i3 = i * 3;
const radius = Math.random() * 200 + starDistance;
const theta = Math.random() * Math.PI * 2;
const phi = Math.acos(2 * Math.random() - 1);
const x = radius * Math.sin(phi) * Math.cos(theta);
const y = radius * Math.sin(phi) * Math.sin(theta);
const z = radius * Math.cos(phi);
distantOriginalPositions[i3] = x;
distantOriginalPositions[i3 + 1] = y;
distantOriginalPositions[i3 + 2] = z;
distantCurrentPositions[i3] = x;
distantCurrentPositions[i3 + 1] = y;
distantCurrentPositions[i3 + 2] = z;
distantStarPositions[i3] = x;
distantStarPositions[i3 + 1] = y;
distantStarPositions[i3 + 2] = z;
// Store original and current sizes for distant stars
const baseSize = Math.random() * 0.1 + 0.05;
distantOriginalSizes[i] = baseSize;
distantCurrentSizes[i] = baseSize;
distantStarSizes[i] = baseSize;
}
distantStarGeometry.setAttribute('position', new THREE.BufferAttribute(distantStarPositions, 3));
distantStarGeometry.setAttribute('size', new THREE.BufferAttribute(distantStarSizes, 1));
const distantStarMaterial = new THREE.PointsMaterial({
color: 0xccccff,
size: 0.15,
sizeAttenuation: true,
transparent: true,
opacity: 0.4
});
const distantStars = new THREE.Points(distantStarGeometry, distantStarMaterial);
scene.add(distantStars);
// Animation parameters
const movementAmplitude = 2;
const repulsionRadius = 400;
const repulsionStrength = 5;
const interpolationSpeed = 5;
// NEW: Cursor brightness parameters
const brightnessRadius = 600; // Radius for size increase effect
const maxSizeMultiplier = 400.0; // Maximum size increase (4x original size)
const sizeInterpolationSpeed = 100.0; // Speed of size changes
// Raycaster for mouse position in 3D space
const raycaster = new THREE.Raycaster();
const mouseWorldPos = new THREE.Vector3();
function animateStars(camera, mouse, deltaTime) {
const time = Date.now() * 0.0003;
// Get mouse position in world space
if (mouse && camera) {
raycaster.setFromCamera(mouse, camera);
// Project mouse to a plane at distance 0 from camera
const distance = 100;
mouseWorldPos.copy(raycaster.ray.direction).multiplyScalar(distance).add(raycaster.ray.origin);
}
// Update close stars
const positions = starGeometry.attributes.position.array;
const sizes = starGeometry.attributes.size.array;
for (let i = 0; i < starCount; i++) {
const i3 = i * 3;
// Get original position
const origX = originalPositions[i3];
const origY = originalPositions[i3 + 1];
const origZ = originalPositions[i3 + 2];
// Add gentle oscillating movement
const offsetX = Math.sin(time + i * 0.01) * movementAmplitude;
const offsetY = Math.cos(time * 0.7 + i * 0.02) * movementAmplitude;
const offsetZ = Math.sin(time * 0.5 + i * 0.015) * movementAmplitude;
let targetX = origX + offsetX;
let targetY = origY + offsetY;
let targetZ = origZ + offsetZ;
// Cursor repulsion
if (mouse) {
const dx = targetX - mouseWorldPos.x;
const dy = targetY - mouseWorldPos.y;
const dz = targetZ - mouseWorldPos.z;
const distance = Math.sqrt(dx * dx + dy * dy + dz * dz);
if (distance < repulsionRadius && distance > 0) {
const force = (1 - distance / repulsionRadius) * repulsionStrength;
const nx = dx / distance;
const ny = dy / distance;
const nz = dz / distance;
targetX += nx * force;
targetY += ny * force;
targetZ += nz * force;
}
}
// Smooth interpolation to target position
const currentX = currentPositions[i3];
const currentY = currentPositions[i3 + 1];
const currentZ = currentPositions[i3 + 2];
const lerpFactor = Math.min(interpolationSpeed * deltaTime, 1.0);
currentPositions[i3] = THREE.MathUtils.lerp(currentX, targetX, lerpFactor);
currentPositions[i3 + 1] = THREE.MathUtils.lerp(currentY, targetY, lerpFactor);
currentPositions[i3 + 2] = THREE.MathUtils.lerp(currentZ, targetZ, lerpFactor);
// Update geometry positions
positions[i3] = currentPositions[i3];
positions[i3 + 1] = currentPositions[i3 + 1];
positions[i3 + 2] = currentPositions[i3 + 2];
// NEW: Calculate size based on cursor proximity
let targetSize = originalSizes[i];
if (mouse) {
const finalX = currentPositions[i3];
const finalY = currentPositions[i3 + 1];
const finalZ = currentPositions[i3 + 2];
const dx = finalX - mouseWorldPos.x;
const dy = finalY - mouseWorldPos.y;
const dz = finalZ - mouseWorldPos.z;
const distance = Math.sqrt(dx * dx + dy * dy + dz * dz);
if (distance < brightnessRadius) {
// Calculate size multiplier based on distance (closer = bigger)
const proximityFactor = 1 - (distance / brightnessRadius);
const sizeMultiplier = 1 + (proximityFactor * (maxSizeMultiplier - 1));
targetSize = originalSizes[i] * sizeMultiplier;
}
}
// Smooth interpolation for size changes
const sizeLerpFactor = Math.min(sizeInterpolationSpeed * deltaTime, 1.0);
currentSizes[i] = THREE.MathUtils.lerp(currentSizes[i], targetSize, sizeLerpFactor);
sizes[i] = currentSizes[i];
}
// Update distant stars (less affected by cursor)
const distantPositions = distantStarGeometry.attributes.position.array;
const distantSizes = distantStarGeometry.attributes.size.array;
for (let i = 0; i < distantStarCount; i++) {
const i3 = i * 3;
const origX = distantOriginalPositions[i3];
const origY = distantOriginalPositions[i3 + 1];
const origZ = distantOriginalPositions[i3 + 2];
// Gentler movement for distant stars
const offsetX = Math.sin(time * 0.5 + i * 0.005) * movementAmplitude * 0.3;
const offsetY = Math.cos(time * 0.3 + i * 0.008) * movementAmplitude * 0.3;
const offsetZ = Math.sin(time * 0.4 + i * 0.006) * movementAmplitude * 0.3;
let targetX = origX + offsetX;
let targetY = origY + offsetY;
let targetZ = origZ + offsetZ;
// Weaker cursor repulsion for distant stars
if (mouse) {
const dx = targetX - mouseWorldPos.x;
const dy = targetY - mouseWorldPos.y;
const dz = targetZ - mouseWorldPos.z;
const distance = Math.sqrt(dx * dx + dy * dy + dz * dz);
if (distance < repulsionRadius * 1.5 && distance > 0) {
const force = (1 - distance / (repulsionRadius * 1.5)) * repulsionStrength * 0.3;
const nx = dx / distance;
const ny = dy / distance;
const nz = dz / distance;
targetX += nx * force;
targetY += ny * force;
targetZ += nz * force;
}
}
// Smooth interpolation for positions
const currentX = distantCurrentPositions[i3];
const currentY = distantCurrentPositions[i3 + 1];
const currentZ = distantCurrentPositions[i3 + 2];
const lerpFactor = Math.min(interpolationSpeed * deltaTime * 0.7, 1.0);
distantCurrentPositions[i3] = THREE.MathUtils.lerp(currentX, targetX, lerpFactor);
distantCurrentPositions[i3 + 1] = THREE.MathUtils.lerp(currentY, targetY, lerpFactor);
distantCurrentPositions[i3 + 2] = THREE.MathUtils.lerp(currentZ, targetZ, lerpFactor);
distantPositions[i3] = distantCurrentPositions[i3];
distantPositions[i3 + 1] = distantCurrentPositions[i3 + 1];
distantPositions[i3 + 2] = distantCurrentPositions[i3 + 2];
// NEW: Size effect for distant stars (weaker)
let targetSize = distantOriginalSizes[i];
if (mouse) {
const finalX = distantCurrentPositions[i3];
const finalY = distantCurrentPositions[i3 + 1];
const finalZ = distantCurrentPositions[i3 + 2];
const dx = finalX - mouseWorldPos.x;
const dy = finalY - mouseWorldPos.y;
const dz = finalZ - mouseWorldPos.z;
const distance = Math.sqrt(dx * dx + dy * dy + dz * dz);
if (distance < brightnessRadius * 1.2) {
// Weaker effect for distant stars
const proximityFactor = 1 - (distance / (brightnessRadius * 1.2));
const sizeMultiplier = 1 + (proximityFactor * (maxSizeMultiplier * 0.5 - 1));
targetSize = distantOriginalSizes[i] * sizeMultiplier;
}
}
// Smooth interpolation for distant star sizes
const sizeLerpFactor = Math.min(sizeInterpolationSpeed * deltaTime * 0.8, 1.0);
distantCurrentSizes[i] = THREE.MathUtils.lerp(distantCurrentSizes[i], targetSize, sizeLerpFactor);
distantSizes[i] = distantCurrentSizes[i];
}
// Mark geometry for update
starGeometry.attributes.position.needsUpdate = true;
starGeometry.attributes.size.needsUpdate = true;
distantStarGeometry.attributes.position.needsUpdate = true;
distantStarGeometry.attributes.size.needsUpdate = true;
// Subtle twinkling
starMaterial.opacity = 0.6 + Math.sin(time * 2) * 0.2;
distantStarMaterial.opacity = 0.3 + Math.sin(time * 1.5 + 1) * 0.1;
}
return {
stars,
distantStars,
animateStars,
starMaterial,
distantStarMaterial
};
}

239
src/transitionManager.js Normal file
View file

@ -0,0 +1,239 @@
import * as THREE from 'three';
import { createModelFromPreloaded, resetMeshGeometry, cleanupGeometryData } from './modelManager.js';
import { startBoldRoughnessAnimation, startInnovationGlassAnimation } from './animationManager.js';
// Transition state management
export let currentScene = 0; // 0: bold, 1: innovation, 2: agility, 3: storytelling
export let isTransitioning = false;
export const fadeSpeed = 1; // Easily adjustable fade speed
export const transitionDuration = 1; // Easily adjustable transition duration (seconds)
export let scrollDownCount = 0;
export let scrollUpCount = 0;
export const scrollThreshold = 10; // Changed to 10 as requested
export let transitionStartTime = 0;
export let transitionDirection = 1; // 1 for forward, -1 for backward
// Camera-relative transition vectors
export let transitionUpVector = new THREE.Vector3();
export let transitionDownVector = new THREE.Vector3();
export const transitionDistance = 50; // Increased distance for more dramatic transitions
// Scene objects
export let currentModel = null;
export let nextModel = null;
export let mixer = null;
export let nextMixer = null;
export let autoRotationAngle = 0;
// Setter functions to modify exported variables safely
export function setCurrentModel(model) {
currentModel = model;
}
export function setMixer(animMixer) {
mixer = animMixer;
}
export function setNextModel(model) {
nextModel = model;
}
export function setNextMixer(animMixer) {
nextMixer = animMixer;
}
// Calculate camera-relative transition vectors for diagonal movement
export function calculateTransitionVectors(camera) {
// Get camera's world direction
const cameraDirection = new THREE.Vector3();
camera.getWorldDirection(cameraDirection);
// Get world up vector
const worldUp = new THREE.Vector3(0, 1, 0);
// Calculate camera's left vector - BACK TO ORIGINAL (this gave correct left direction)
const cameraLeft = new THREE.Vector3();
cameraLeft.crossVectors(worldUp, cameraDirection).normalize();
// Calculate camera's local up vector
const cameraUp = new THREE.Vector3();
cameraUp.crossVectors(cameraLeft, cameraDirection).normalize();
// Blend camera up with world up - BUT NEGATE to flip up/down direction
const blendedUp = new THREE.Vector3();
blendedUp.addVectors(
cameraUp.clone().multiplyScalar(0.5),
worldUp.clone().multiplyScalar(0.5)
).normalize().negate(); // ADD .negate() here to flip up to down
// Create diagonal vector (up-left)
const diagonalUpLeft = new THREE.Vector3();
diagonalUpLeft.addVectors(
blendedUp.clone().multiplyScalar(0.5),
cameraLeft.clone().multiplyScalar(0.5)
).normalize();
// Set transition vectors
transitionUpVector = diagonalUpLeft.clone().multiplyScalar(transitionDistance);
transitionDownVector = diagonalUpLeft.clone().multiplyScalar(-transitionDistance);
console.log('Diagonal transition vectors calculated with distance:', transitionDistance);
}
// Start transition to next or previous scene
export function startTransition(direction = 1, preloadedModels, scene, camera, controls) {
if (isTransitioning) return;
// Check bounds - now 4 scenes (0-3)
if (direction > 0 && currentScene >= 3) return; // Can't go forward from storytelling
if (direction < 0 && currentScene <= 0) return; // Can't go backward from bold
console.log(`Starting diagonal transition: direction=${direction}, currentScene=${currentScene}`);
// Calculate camera-relative diagonal transition vectors
calculateTransitionVectors(camera);
isTransitioning = true;
transitionStartTime = performance.now();
transitionDirection = direction;
// Determine next model based on direction and current scene
let nextModelType = '';
if (direction > 0) {
// Moving forward
if (currentScene === 0) {
nextModelType = 'innovation';
} else if (currentScene === 1) {
nextModelType = 'agility';
} else if (currentScene === 2) {
nextModelType = 'storytelling';
}
} else {
// Moving backward
if (currentScene === 1) {
nextModelType = 'bold';
} else if (currentScene === 2) {
nextModelType = 'innovation';
} else if (currentScene === 3) {
nextModelType = 'agility';
}
}
console.log(`Next model type: ${nextModelType}`);
if (nextModelType) {
const { model, animMixer } = createModelFromPreloaded(nextModelType, preloadedModels, camera, controls);
nextModel = model;
nextMixer = animMixer;
// Position next model based on transition direction
if (transitionDirection === 1) {
// Forward: next model starts from diagonal down position (bottom-right)
nextModel.position.copy(transitionDownVector);
console.log(`Next model positioned at diagonal down vector (bottom-right): x=${nextModel.position.x}, y=${nextModel.position.y}, z=${nextModel.position.z}`);
} else {
// Backward: next model starts from diagonal up position (top-left)
nextModel.position.copy(transitionUpVector);
console.log(`Next model positioned at diagonal up vector (top-left): x=${nextModel.position.x}, y=${nextModel.position.y}, z=${nextModel.position.z}`);
}
// Add next model to scene without opacity changes - it will appear instantly when it enters the camera view
scene.add(nextModel);
}
}
// Update transition animation
export function updateTransition(deltaTime, scene) {
if (!isTransitioning) return;
const elapsed = (performance.now() - transitionStartTime) / 1000;
const transitionProgress = Math.min(elapsed / transitionDuration, 1);
// Smooth easing function (ease-in-out)
const easeInOut = (t) => t * t * (3 - 2 * t);
const easedProgress = easeInOut(transitionProgress);
if (currentModel) {
// Move current model along diagonal vector based on transition direction
let moveVector;
if (transitionDirection === 1) {
// Forward: current model moves top-left
moveVector = transitionUpVector.clone().multiplyScalar(easedProgress);
console.log('Current model moving top-left (forward transition)');
} else {
// Backward: current model moves bottom-right
moveVector = transitionDownVector.clone().multiplyScalar(easedProgress);
console.log('Current model moving bottom-right (backward transition)');
}
currentModel.position.copy(moveVector);
}
if (nextModel) {
// Move next model from diagonal vector to center based on transition direction
let moveVector;
if (transitionDirection === 1) {
// Forward: next model moves from bottom-right to center
moveVector = transitionDownVector.clone().multiplyScalar(1 - easedProgress);
console.log('Next model moving from bottom-right to center (forward transition)');
} else {
// Backward: next model moves from top-left to center
moveVector = transitionUpVector.clone().multiplyScalar(1 - easedProgress);
console.log('Next model moving from top-left to center (backward transition)');
}
nextModel.position.copy(moveVector);
}
// Complete transition
if (transitionProgress >= 1) {
console.log('Diagonal transition animation complete');
// FIXED: Reset geometry before removing the model
if (currentModel) {
// Reset all geometry to original state before removal
currentModel.traverse((object) => {
if (object.isMesh) {
resetMeshGeometry(object);
}
});
// Clean up geometry user data completely
cleanupGeometryData(currentModel);
scene.remove(currentModel);
console.log('Previous model removed from scene');
}
// Switch to next model
if (nextModel) {
currentModel = nextModel;
mixer = nextMixer;
// Reset position to center
currentModel.position.set(0, 0, 0);
}
nextModel = null;
nextMixer = null;
isTransitioning = false;
currentScene += transitionDirection; // Update scene based on direction
scrollDownCount = 0;
scrollUpCount = 0;
// Start animations based on current scene
if (currentScene === 0) {
// Restart bold roughness animation when returning to bold section WITHOUT delay
startBoldRoughnessAnimation(false);
} else if (currentScene === 1) {
startInnovationGlassAnimation();
}
console.log(`Diagonal transition complete. Current scene: ${currentScene}`);
}
}
// Scroll event handler
export function onMouseScroll(event, preloadedModels, scene, camera, controls) {
if (isTransitioning) return;
if (event.deltaY > 0) {
// Scrolling down - move forward
scrollDownCount++;
scrollUpCount = 0; // Reset up count
console.log(`Scroll down count: ${scrollDownCount}`);
if (scrollDownCount >= scrollThreshold) {
startTransition(1, preloadedModels, scene, camera, controls); // Forward direction
}
} else if (event.deltaY < 0) {
// Scrolling up - move backward
scrollUpCount++;
scrollDownCount = 0; // Reset down count
console.log(`Scroll up count: ${scrollUpCount}`);
if (scrollUpCount >= scrollThreshold) {
startTransition(-1, preloadedModels, scene, camera, controls); // Backward direction
}
}
}